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Abstract

Competition is ubiquitous in microbial communities, shaping both their spatial and
temporal structure and composition. Many classic minimal models, such as the Moran
model, have been employed in ecology and evolutionary biology to understand the
role of fixation and invasion in the maintenance of a population. Informed by recent
experimental studies of cellular competition in confined spaces, we extend the Moran
model to explicitly incorporate spatial exclusion through mechanical interactions among
cells within a one-dimensional, open microchannel. The results of our spatial exclusion
model differ significantly from those of its classical counterpart. The fixation/extinction
probability of a species sharply depends on the species’ initial relative abundance, and
the mean time to fixation is greatly accelerated, scaling logarithmically, rather than
algebraically, with the system size. In non-neutral cases, spatial exclusion tends to
attenuate the effects of fitness differences on the probability of fixation, and the fixation
times increase as the relative fitness differences between species increase. Successful
fixation by invasive species, whether through mutation or immigration, are also less
probable on average than in the Moran model. Surprisingly, in the spatial exclusion
model, successful fixations occur on average more rapidly in longer channels. The mean
time to fixation heuristically arises from the boundary between populations performing
either quasi-neutral diffusion, near a semi-stable fixed point, or quasi-deterministic
avalanche dynamics away from the fixed point. These results, which can be tested in
microfluidic monolayer devices, have implications for the maintenance of species diversity
in dense bacterial ecosystems where spatial exclusion is central to the competition, such
as in organized biofilms or intestinal crypts. The results may be broadly applied to
any system displaying tug-of-war type dynamics with a region of quasi-neutral diffusion
centered around regions of deterministic population collapse.

Author summary

Competition for territory between different species has far reaching consequences for
the diversity and fate of bacterial communities. In this study, we theoretically and
computationally study the competitive dynamics of two bacterial populations competing
for space in confined environments. The model we develop extends classical models that
have served as paradigms for understanding competitive dynamics but did not explicitly
include spatial exclusion. We find that spatial effects drastically change the probability of
one species successfully outcompeting the other and accelerates the mean time it takes for
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a species to exclude the other from the environment. In comparison to the predictions of
population models that neglect spatial exclusion, species with higher selective advantages
are less heavily favoured to outcompete their rival species. Moreover, spatial exclusion
influences the success of an invasive species taking over a densely populated community.
Compared to classical well-mixed models, there is a reduction in the effectiveness of an
invaders fitness advantage at improving the chances of taking over the population. Our
results show that spatial exclusion has rich and unexpected repercussions on species
dominance and the long-time composition of populations. These must be considered
when trying to understand complex bacterial ecosystems such as biofilms and intestinal
flora.

Introduction 1

Ecological competition is a ubiquitous feature of multi-species communities. It often 2

manifests itself through direct antagonistic interactions between species, such as bacterial 3

toxins, metabolic waste products and parasitic infections [1–3]. Competition also 4

commonly occurs indirectly through various exploitative scenarios that deplete communal 5

resources. Computational models of the dynamics of populations, framed in the context of 6

a competition for finite system resources (e.g., light, food, population density, etc.) [4–12], 7

have defined various heuristic measures of this competition for resources, such as the 8

niche overlap, competition strength, and carrying capacity. Although these measures are 9

commonly used to describe the dynamics of population growth and co-existence, a deeper 10

understanding of the processes that govern the structure of ecological communities is 11

acquired by exploring the mechanisms of the resource competition that underlie these 12

coarse-grained, aggregate parameters [13–18]. 13

Among the various resources required for population maintenance and growth, physical 14

space is essential for expansion and access to additional resources [19–21]. In fact, 15

individuals inherently require physical space for both their own growth and those of 16

their progeny. Spatial competition can result in complicated patterning, synchrony of 17

population distributions, spatial segregation into different niches within the environment 18

and hosts, as well as other non-trivial dynamics [20,22–25]. 19

In bacterial communities, a variety of spatially ordered configurations may emerge 20

from similarly distributed initial populations. This spatial structure plays an important 21

role in medicine, industrial fabrication, and food production [26–30]. In bacterial 22

biofilms, for instance, microbial populations form complex structures wherein various 23

species segregate [31–33]. Different layers of bacterial species within a biofilm may 24

have different sensitivity and resistance to antibiotics that restrict our ability to treat 25

associated infections [34, 35]. The biogeography of bacteria in the digestive tract, 26

which form the human digestive microbiome, illustrates another spatially heterogeneous 27

ecology [36, 37]. In particular, the intestinal tract hosts diverse microbiota whose 28

complex physical structures, such as mucus densities and epithelial crypts, have direct 29

implications on the long-term composition of the bacterial community [38]. It is, therefore, 30

necessary to understand how spatial constraints, arising from a confining environment 31

and crowding/exclusion by other bacteria, shape the dynamics of each species and the 32

overall patterning of the populations. 33

Spatial constraints may also have ramifications for the overall ecological diversity. For 34

instance, the boundary between expanding fronts of different bacterial populations, grown 35

on solid substrates, fluctuates superdiffusively. This encourages accelerated genetic drift 36

that may limit diversity more rapidly than neutral mutation models void of any spatial 37

dynamics [39]. Alternatively, diversity may be increased in ecosystems wherein species 38

undertake differing strategies in relation to the space they occupy - sometimes referred 39

as distinct spatial ‘niches’. For instance, trade-offs between motility and competitive 40
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ability may allow for coexistence between competing species [40]. 41

It is well known that diversity may be strongly influenced by the invasion of external 42

species. As initially noted by Gause et al., extinctions are frequently observed in a closed 43

competitive ecosystem within a laboratory setting even though the similar ecosystem 44

persists indefinitely in nature [41–44]. This suggests that invasion events, which implicitly 45

rely on a partitioning of the space between the local and meta-community, contribute 46

crucially to the population dynamics by reintroducing individuals into the ecosystem [45– 47

48]. For instance, persistent diversity is observed through the fragmentation of continuous 48

ecosystems in studies of patch-models of ecology and theories of island biogeography 49

[16, 49–52]. 50

The contest for space is critical in environments with small total populations, which 51

accentuates the individual composition of the colony, such as within intestinal crypts [53, 52

54]. In recent years, microfluidic devices have started to provide controlled systems for 53

exploring the population dynamics of small bacterial microcolonies. Experiments in 54

microfluidic monolayer devices, of various geometries, have shown that small populations 55

of asymmetric bacteria, like E. coli, can align into highly ordered arrangements [55]. 56

These populations behave differently from their well-mixed counterparts given the densely 57

packed nature of their confinement [56,57]. Cell morphology and the confining geometry 58

are observed to greatly affect the ordering and fixation probability of cell populations in 59

these devices [57–62]. 60

Certain models, like the classical Moran model, subsume spatial factors into their 61

framework by assuming that the species are well-mixed (i.e., that species abundances 62

are uniformly distributed in a certain location). Similarly, other models of bacterial 63

competition that incorporate space more explicitly also utilize the well-mixed assumption 64

to explain ecological processes, such as the spatiotemporal synchrony of densities of 65

different species [63–65]. However, well-mixed continuous models that describe the con- 66

centration of bacterial populations generally neglect explicit spatial exclusion. Although 67

many factors may influence competition for space, these densely packed populations 68

must fundamentally exclude each other through mechanical interactions between cells. 69

Consequently, modeling the competition of bacteria in small, confined environments 70

requires explicit consideration of the system’s spatial configuration to correctly describe 71

the competitive dynamics. 72

In this paper, we explore how spatial constraints imposed by cellular interactions 73

influence the population dynamics of competing microcolonies of bacteria. Inspired by 74

the experimental setting of a microfluidic chemostat, we investigate how two species of 75

bacteria compete through physical exclusion in an open, single lane microchannel [66]. We 76

first review a general model of competing populations that reduces to the Moran model 77

for well-mixed populations, before describing an extension to this model that incorporates 78

spatial exclusion. We calculate the probabilities and the mean first-passage times of 79

fixation for the spatial exclusion model, comparing the results to the Moran model. We 80

then explore how fitness differences between the two species - for instance, differences in 81

the bacterial growth rate or doubling time - shape the competitive landscape by affecting 82

the time to and probability of fixation. Finally, the model is used to investigate invasion 83

events that perturb a local community and the characteristics of a successful invasion. 84

Models and Methods 85

We characterize the state of the system by the abundances of the competing species 86

(i.e. the numbers of individuals of each species found in the ecosystem) which reflect 87

the dynamics and the evolution of the community. We focus on the processes where the 88

competition amounts to a zero-sum game: different populations compete for dominance 89

under a constraint of finite total population size, N , determined by limitations of the 90
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inhabited space. Thus, in a two species system with a finite total population size studied 91

here, fixing the abundance of the population of the first species, n, determines the 92

abundance of the population of the second species, N − n, and both species compete to 93

maintain their non-zero abundances in the system. The constraint of a fixed population 94

size means that the dynamics of this 2 species system can be mapped onto a one- 95

dimensional process defined by the abundance n. 96

Several important models have been used to study the effects of different competition 97

mechanisms on the species abundance and the community structures. A classical, highly 98

influential model - the Moran model (and its variants) - has served as the paradigm 99

for understanding the effects of stochastic ecological drift and natural selection on the 100

diversity of a well-mixed population [59, 67–70]. A closely related model, Hubbell’s 101

neutral theory of biodiversity has been used to describe the emergence of the species 102

abundance distribution in a neutral immigration-birth-death process [71]. Among others, 103

Lotka-Voltera models further explore the role of species interactions and niche overlap 104

on the interspecific competition; their frameworks can also be roughly mapped to the 105

Moran model in their neutral regimes [16, 72, 73]. The fundamental stochastic nature of 106

the ecological processes underlies all these models, where stochastic fluctuations of the 107

abundances emerge from the demographic noise (i.e., the inherent randomness of birth 108

and death events in a population). 109

We investigate the population dynamics of two competing species as a discrete 110

stochastic process denoting the probability of being in a state with one species abundance 111

at n (and the other species abundance at N − n) at time t is p(n, t). The population 112

abundance of a species can change either through births or deaths of the individual cells, 113

with the probability of a birth or death in the population n in an interval of time ∆t 114

denoted as T+(n → n+1,∆t) or T−(n → n− 1,∆t), respectively [74,75]. The evolution 115

of the probability p(n, t), is governed by a one-dimensional forward master equation 116

(ME) 117

∂tp(n, t) = r−N (n+ 1)p(n+ 1, t) + r+N (n− 1)p(n− 1, t)−
(
r+N (n) + r−N (n)

)
p(n, t), (1)

where r±N (n) = T±(n → n± 1,∆t)/∆t are the transition rates for events of an increase 118

or decrease in abundance [76]. 119

We are interested in the process of fixation wherein the abundance of one species 120

approaches N , effectively outcompeting the other species by removing it from the system. 121

This fixation can be viewed as a first-passage process that occurs when the abundance 122

of a species reaches either of the absorbing states, at n = 0 and n = N , at which point 123

the system settles at steady-state with one species dominating indefinitely [16,77]. In 124

these processes, the first-passage probability and the mean first-passage time (MFPT) 125

are characteristics of the system which elucidate the dynamics of the process [75]. 126

The mean-first passage time to either fixation state, from a starting abundance n,
τ(n), relates the average time the competition between the two species lasts before one
takes over and is described by the backward equation

τ(n) = ∆t+ T+(n → n+ 1,∆t)τ(n+ 1) + T−(n → n− 1,∆t)τ(n− 1)

+
(
1− T+(n → n+ 1,∆t)− T−(n → n− 1,∆t)

)
τ(n). (2)

The Fokker-Planck (FP) expansion to order O(N−2) of this equation is 127

−1 =
A(x)

N
τ ′(x) +

B(x)

2N2
τ ′′(x), (3)

where A(x) = r+(x) − r−(x) and B(x) = r+(x) + r−(x) with the transformation 128

r
+/−
N (n) → r+/−(x) and x = n/N . A similar FP expansion in 1/N of the first-passage 129
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probability to settle in either absorbing abundance state f ∈ {0, 1} results in a continuous 130

description (see S1 Appendix) 131

0 = A(x)P ′
f (x) +

B(x)

2N
P ′′
f (x), (4)

where Pf (x) is the probability of being absorbed at the state f starting from an abundance 132

x. For instance, P1(x) is the probability that a species with relative abundance x will 133

fill the space to fixate at the absorbing abundance x = 1. 134

Finally, the corresponding equation for the directional MFPT of fixation through 135

one of the absorbing states f ∈ {0, 1} may be written as follows: 136

−Pf (x) = A(x)
∂

∂x

(
Pf (x)τf (x)

)
+

B(x)

2N

∂2

∂x2

(
Pf (x)τf (x)

)
. (5)

The solutions to these equations depend on the choice of the birth and death rates of 137

the model. In the classical Moran model, which represents mixed populations without 138

spatial structure, a random individual from a fixed and finite population of size N is 139

selected to give birth at each time step while, simultaneously, a random individual is 140

selected to be removed from the system to make room for the progeny and maintain 141

a constant total population N (see Fig 1A). In the truly neutral case without fitness 142

differences between the species, the probability for the species with n individuals to 143

increase in size is the product of the probability that a member of that species is selected 144

for a birth event (n/N) and the probability that the other species is selected for a 145

death event ((N − n)/N). Consequently, the probabilities of abundance transitions in a 146

discrete timestep ∆t in the Moran model are T+(n → n+ 1) = (n/N)((N − n)/N) and 147

T−(n → n−1) = ((N −n)/N)(n/N)). These discrete time probabilities are transformed 148

and rescaled to represent the rates used in Eq 1, r±N (n) = rNT±(n → n ± 1) where 149

r = 1/(N∆t). Plugging these expressions into Eq 3 and Eq 4 in the continuum limit 150

x = n/N recovers the classical Moran model result, namely, the probability of a successful 151

fixation is equal to the relative initial abundance of the fixated species, P (x) = x, and 152

the mean time to fixation is τ(x) = −N/r[(1− x) log(1− x) + x log x] [78]. 153

Fitness differences/selective advantages between the species can be incorporated
into the model by appropriately changing the probability of selecting a species for a
birth/death. By assuming that a fitness difference s - or coefficient of selection in
evolutionary dynamics - exists between the species, the rates of the Moran model with
selection are

rMoran,+
N (n) = rs

n(N − n)

N + (s− 1)n

rMoran,−
N (n) = r

n(N − n)

N + (s− 1)n
, (6)

where s > 1 indicates a fitness advantage. However, neither the neutral nor the selective 154

Moran model account for the spatial consideration of physical exclusion. 155

Building on this paradigmatic model, we consider a system where N individuals of 156

two species are constrained to a one-dimensional space (a channel open at both ends) as 157

shown in Fig 1B. We assume that the channel is always full and that the two species 158

are segregated such that only one boundary separates the populations. Without loss of 159

generality, we take n to describe the number of individuals belonging to the species on 160

the left side of the lane (species 1). Contrary to the Moran model, the transition rates 161

of the populations now depend on the spatial arrangement of the cells. A cell at any 162

location can divide and produce a progeny, but death events only happen when a cell is 163

pushed out of either end of the channel. 164
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birth

death leftdeath right

A

B

C

Fig 1. Illustration of minimal models of ecological competition. (A) Illustration
of the classical Moran model within a well-mixed population of two species of bacteria.
Change in the abundance, n, of a species relies on selecting an individual of that species
to give birth while simultaneously having an individual of the other species die. (B) A
spatial exclusion model for 1-dimensional competition within a micro-channel. Instead
of a well mixed population, the cell populations are segregated, each to one side of the
open channel. (C) Within the spatial model, a birth by one species may be followed by a
death by either species, resulting in either a state transition with probability p(n → n+1)
or no change at all. The probability of dividing to the right or left is weighted by the
location of the dividing cell in the channel.

In this system, the relative species abundance delineates the location of the boundary 165

that separates the species. When an individual cell grows, the boundary shifts right 166

or left, as illustrated in Fig 1C. As n increases, the boundary between the two species 167

moves to the right with probability T+(n → n + 1); conversely, decreases in n result 168

in the boundary moving to the left with probability T−(n → n− 1). This competitive 169

process continues until a sequence of jumps makes the boundary reach either end of the 170

channel (i.e., n = 0 or n = N) with only one surviving species, which is said to fixate. 171

Like the Moran model, fitness differences modify the selection probabilities. The 172

probability to select a specific individual i of species 1 for birth is p+i,1 = s/[(N −n)+sn], 173

whereas the probability for individual i of species 2 is p+i,2 = 1/[(N − n) + sn]. Following 174

the birth, the progeny must make room for itself by pushing the cells on either side of 175

its progenitor outwards. All cells in line are jointly pushed outwards, with the cell at 176

the end of the channel getting removed from system by falling outside the channel. 177

In open-ended micro-channels, it has been experimentally observed that cells are more 178

likely to grow in the direction of the closer channel opening because fewer cells need to be 179

pushed in that direction. The probability for a cell to grow towards one of the openings 180

was observed to scale linearly with the number of individuals between the cell location 181

and the other opening [57]. Therefore, we assume that the probability that an individual 182

cell at position i grows to the right is proportional to the number of individuals that are 183

to the left of it pleft = (i− 1)/(N − 1) and vice versa pright = (N − i− 1)/(N − 1). This 184

spatial exclusion model is illustrated in Fig 1C. 185

Thus, the rate at which the boundary moves to the right in an interval of time ∆t is 186

the sum of the rates for each individual of species 1 to grow to the right 187

r+N (n) =
n∑

i=1

1

∆t

(
s

(N − n) + sn

)
i− 1

N − 1
= r

sn(n− 1)

2[(N − n) + sn]
, (7)
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whereas the rate of the boundary moving to the left is 188

r−N (n) =
N∑

i=n+1

1

∆t

(
1

(N − n) + sn

)
N − i

N − 1
= r

(N − n)(N − n− 1)

2[(N − n) + sn]
. (8)

Here, we have rescaled the basal rate to r = 1/(N−1)∆t. These rates can be substituted 189

in Eq 4-5 and solved to clarify the dynamics of the spatial exclusion model. 190

Results 191

Spatial exclusion gives rise to sharp sigmoidal fixation probabilities 192

and exponentially fast MFPTs 193

We first consider a neutral case where species are functionally equivalent without fitness 194

differences between them (s = 1) (e.g., two populations of cells whose phenotypic 195

differences offer no upper hand or two identical lineages with a common ancestor). In 196

contrast with the neutral Moran model, A(x) = [(s− 1)x2 + 2x− 1]/2[1 + x(s− 1)] and 197

B(x) = [(s+ 1)x2 − 2x+ 1]/2[1 + x(s− 1)] for the spatial exclusion model . Although 198

an analytical solution to Eq (4) is not available for s ̸= 1, it can be easily numerically 199

integrated (see also S1 Appendix). Fig 2 shows the results of a comparison between the 200

neutral Moran model and the spatial exclusion model. 201

We find that the probability for a species to fixate in the spatial exclusion model 202

as a function of its initial relative abundance is a sigmoidal function. This differs 203

significantly from the linear dependence predicted by the Moran model (see Fig 2A). 204

Any minority population (with a starting fraction x < 1/2), is much less likely to take 205

over the population than in the Moran model. Conversely, any majority population 206

(x > 1/2) is much more likely to succeed at fixating within the lane. The slope of 207

this sigmoidal probability depends on the length of the microchannel (or the total 208

population N) approaching a step function for large N . The inflection point is found 209

at the equiprobable abundance xmax = 1/2, defined as the abundance at which both 210

species are equally likely to take over the channel. 211

For the Moran model, the mean time to fixation grows linearly with the system size. 212

For the spatial exclusion model, the mean time to fixation is exponentially shorter than 213

that of the Moran model for all initial boundary positions (see Fig 2B). Interestingly, 214

the MFPT curves for different N collapse onto each other away from the central peak at 215

the equiprobable abundance of 1/2. This implies that the time to fixation, essentially, 216

does not depend on system size unless the initial sizes of the two populations are closely 217

balanced. 218

This independence of the dynamics on N can be heuristically explained by investigat- 219

ing the behaviour of Eq (3). For the spatial model, the first term on the right hand side 220

(the drift term) is small, A(x) ≈ 0, around the peak of the MFPT. The dynamics around 221

the peak are dominated by the second (diffusion) term on the right hand side of Eq (3), 222

which scales like 1/N . Conversely, away from the peak, the drift term dominates the 223

expression for large N . In this case, Eq (3) can be approximated by a first-order ODE 224

−1 = A(x)τ ′det(x). (9)

The solution to this equation 225

τdet(x) = −
∫ 1

x

dx′

A(x′)
, (10)

is the time to fixation for a process with a deterministic velocity A(x). For the neutral 226

spatial exclusion model, using Eq 10, fixation occurs after time τdet(x) = − log |2x−1|/r. 227
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A

B

C

Fig 2. Competition outcomes for
neutral dynamics. Fokker-Planck ap-
proximation for the fixation probabili-
ties and mean-first passage times (MF-
PTs) for the Moran model (dotted lines)
and the spatial spatial exclusion model
(solid lines) for various system sizes
(N = 10, 100, 1000). (A) The fixa-
tion probability in the spatial model
is sigmoidal around an inflection point
at x = 1/2 and becomes increasingly
steep, approaching a step-function at
large N . The Moran model, in contrast,
always predicts a linear fixation proba-
bility equal to the relative abundance.
(B) For the spatial exclusion model,
the MFPTs at varying N collapse onto
each other for most relative abundances
except around the inflection point. The
dynamics away from x = 1/2 follow a
deterministic path to fixation approxi-
mated by τdet (dashed line). Notably,
the MFPTs in the spatial model are sig-
nificantly faster than those predicted by
the Moran model. (C) The maximal
MFPT of the Moran model is linear in
N whereas the maximal MFPT of the
spatial model grows substantially more
slowly (sub-polynomial in N).

The displacement of the relative abundance is exponential in time when the change in 228

relative abundance is governed by this deterministic velocity. 229

The mean-time to fixation of the spatial exclusion model substantially differs from 230

the prediction of the Moran model, even close to the peak, where the MFPT depends on 231

N . This difference between the two models for the MFPTs to fixation is most apparent 232

at a starting fraction of x = 1/2 where A(x) = 0. In Fig 2C, the MFPT to fixation in 233

the neutral spatial exclusion model grows only sub-polynomially with N rather than 234

linearly as in the classical Moran model. 235

Fitness differences break the symmetry of the fixation probability 236

and engender longer MFPTs 237

So far, our description of the fixation times and probabilities has focused on neutral 238

populations with similar or functionally identical species. However, more generally, 239

phenotypically dissimilar species exhibit differences in their dynamics such as growth 240
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and death rates, efficiency of resource consumption, etc., which may impact their overall 241

fitness in the environment. In this section, we investigate population fixation in the 242

presence of a fitness difference, s, between two species. Although results are shown for 243

s > 1, results for fitness differences s′ < 1 can be obtained by interchanging species 1 244

and 2 with s = 1/s′. 245

In the Moran model, the probability of fixation is heavily favored toward the species 246

with a fitness advantage for even modest values of s, (Fig 3A)), with the probability of 247

fixation being p(x) = (1− s−xN )/(1− s−N ) for the fitter species [79]. Selection quickly 248

skews the fixation probabilities so that the species with the advantage almost always 249

fixates regardless of its initial abundance. 250

A

B

C

Fig 3. Competition outcomes for
dynamics with fitness differences.
Fokker-Planck approximation for the fix-
ation probabilities and the mean-first
passage times (MFPTs) for both the
Moran model (dotted lines) and the spa-
tial exclusion model (solid lines) with
selection (s = 1, 10, 100). The rela-
tive abundance x is the abundance of
the species with the selective advantage.
(A) The fixation probabilities for both
models with selection are shifted com-
pared to neutral models, benefiting from
a selective advantage. In plots (A) and
(B) the system size is fixed at N = 100;
however, the location of the inflection
point does not differ for varying system
size, only the steepness around the inflec-
tion point is affected as in the neutral
models. In the upper left corner, the
probability of fixation for the Moran
model with s = 10 and s = 100 overlap.
(B) In the spatial model, the maxi-
mum MFPT shifts with the inflection
point and increases with fitness. In con-
trast, for the Moran model, the MFPTs
tend to diminish with s. (C) The first
passage time for the neutral (s = 1)
Moran model exhibits linear growth in
N ; however, this is the exception as the
maximal first passage time for all other
models grow sublinearly. These MFPTs
all have very similar slopes irrespective
of the fitness advantage. Still, they are
shifted such that increased fitness leads
to an increased time to fixation.

By contrast, similar fitness differences do not influence the population dynamics 251

as markedly in the spatial exclusion model. Whereas the probability of fixation as a 252

function of initial fraction x changes form drastically in the Moran model, from a linear 253

function at s = 1 to a concave function without an inflection point for s > 1, within 254

the spatial model, the shape of these curves remain relatively unchanged for all values 255
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of s (see Fig 3A). Rather, fitness differences shift the inflection point of the sigmoidal 256

fixation probability curves towards lower initial relative abundances xmax = 1/(1 +
√
s), 257

but a species is still significantly favoured to fixate when it’s relative abundance is above 258

the inflection point. In other words, fitness differences in the spatial model offer a 259

competitive advantage to the species with increased fitness, but this advantage is not 260

as beneficial as the competitive advantage conveyed by a similar fitness difference in 261

the Moran model. This is also reflected in the probability of fixation averaged over all 262

initial abundances, see S1 Appendix, given that the average probability of fixation for 263

the Moran model is higher than the average probability in the spatial exclusion model. 264

Fitness advantages also impact the dynamics of the fixation. As shown in Fig 3B, 265

higher fitness differences in the Moran model reduce the MFPT to fixation. Counter- 266

intuitively, in the spatial exclusion model, although a greater fitness is generally associated 267

with a higher likelihood of population fixation, increased fitness does not lead to faster 268

fixations. Furthermore, the dependence of the MFPT on the relative fitness in the spatial 269

model is location dependent and non-monotonic as shown in Fig 3B. For instance, the 270

MFPT is maximal for populations initialized at abundances close to the equiprobable 271

abundance xmax = 1/(1 +
√
s), τ(xmax) for any fitness (see Fig 3B), but this time 272

increases with the increase in fitness difference between the species. 273

Accordingly, in the spatial exclusion model, the system’s longest timescale is deter- 274

mined by the competition dynamics around xmax where the probabilities of either species 275

successfully taking over are roughly equivalent. The asymptotic scaling of this maximal 276

MFPT with the system size N is similar to the asymptotic scaling in the neutral case (see 277

Fig 3C). The non-linear slope of the MFPT on the log-log plot indicates that the growth 278

of the MFPT is slower than a power law in N (this is further explored in discussions of 279

Fig 5). The MFPT of the Moran model with selection also shows a sublinear growth in 280

the population size, however, it appears in Fig 3C that this growth is slower than that 281

of the spatial model. 282

Outside of this regime, there is a deterministic regime where the times are all almost 283

identical. Other than the maximal MFPT, the times to fixation for various system sizes, 284

N , collapse onto each other (see Fig 3C) in the deterministic regime. As in the neutral 285

case, we can calculate a deterministic time 286

τdet(x) = − log
∣∣(s− 1)x2 + 2x− 1

∣∣ , (11)

which is independent of system size and recovers the behaviour of the time of fixation 287

(see Fig 3B). These species abundance dynamics correspond to a “tug-of-war”; the two 288

species abundances fluctuate around the equiprobable abundance, with both species 289

trying to take control of the the channel by their abundance. However, there is a quick 290

switch to a deterministic takeover when one species becomes dominant enough at which 291

point the growth in the dominant species abundance accelerates, causing the collapse in 292

the abundance of the other species. 293

Given Eq 11, the asymptotic dependence of the MFPT on s far from the equiprobable 294

abundance is logarithmic in 1/(s − 1). In other words, the MFPT away from the 295

equiprobable abundance will asymptotically decrease with fitness differences. This is 296

contrary to the behaviour of the MFPT at the equiprobable abundance, as it increases 297

with fitness. Just as in the neutral case, the MFPT for most initial relative abundances 298

is recovered using this deterministic approximation of the dynamics. 299

Invasions are less likely to succeed due to spatial exclusion, but 300

succeed on shorter timescales 301

As we have shown, the average time to fixation in a confined channel is sublinear in N . 302

The fixated species remain dominant unless an external event, such as an invasion or 303
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mutation, perturbs the system introducing a new species variant that could compete 304

against the established strain [80–82]. In microchannels, a mutation event at any location 305

would introduce a new variant, but immigration is normally possible only at the edges. 306

However, bacterial populations growing in wider microchannels have been shown to 307

organize into parallel lanes aligning and growing along the axis of the channels. These 308

aligned lanes permit rare immigration events from one lane into another previously 309

fixated lane, which can be viewed as the invasion of a new species into a lane [57,83]. 310

We are interested in the probability and the mean time of a successful invasion 311

wherein an individual cell of the invading species is inserted into the channel. Success 312

of an invasion is defined as the invading species taking over and fixating within the 313

lane/channel. In the well-mixed Moran model, the invasion of an individual from a new 314

species into a previously fixated system results in an initial relative abundance of 1/N 315

for the invading species. Derived in earlier sections, the probabilities of a successful 316

invasion fixation for the Moran model (P1(1/N) = (1 + s−1)/(1 + s−N )) are depicted 317

in Figs 2 and 3. The directional MFPTs of a successful invasion are solutions to Eq 5, 318

shown in Fig 4C&D. 319

The outcome of an invasion in the spatial exclusion model, however, is strongly 320

dependent on the initial location of the invasion event. Unlike the fixation problems 321

studied in the previous section, the appearance of an immigrant in the one-lane model 322

results in two rather than one inter-species boundaries as illustrated in Fig 4A. Never- 323

theless, the mathematical framework of competitive spatial exclusion described above 324

allows us to model inter-species dynamics after such an invasion event, as shown in 325

Fig 4A. The rules that determine the probability for a cell to be selected for birth 326

and death are identical to those outlined previously. However, the system defined by 327

the two inter-species boundaries is now two-dimensional and, accordingly, has added 328

states with rates defining additional transitions. The expressions for these rates and 329

the corresponding two variable master equation are outlined in S1 Appendix. Given 330

that the state space for the spatial invasion model is now two-dimensional, we rely on 331

numerical solutions for the discrete dynamics instead of solving the corresponding 2D 332

Fokker-Planck equation. 333

We find that invasions happening about the center of the channel are the most likely 334

to succeed in pushing out the established species, see Fig 4B. The probability that an 335

invasion event succeeds increases with the fitness advantage of the invading species and 336

successful invasions occur over a broader range of locations along the channel. 337

To provide a global measure of invasion success, we calculate the average invasion 338

probability and the average MFPT to invasion, averaged over all possible initial locations 339

of the invasion event. Surprisingly, this average invasion probability in the neutral spatial 340

model is identical to the invasion probability of the neutral Moran model (s = 1) (i.e., it 341

is equal to 1/N as shown in Fig 4C). 342

As demonstrated in Fig 4C, the probability of a successful invasion increases with 343

fitness more sharply for the Moran model than for the spatial model. However, the 344

probability of successful invasion remains low even for an invasive species with a ten-fold 345

increase in fitness advantage, which is still less likely to fixate than the native species. 346

This suggests that the spatial exclusion dynamics modeled here limit the competitive 347

edge of strains with fitness advantages. 348

Although the probability for the invasive species to fixate is identical under neutral 349

conditions for both the Moran model and the spatial exclusion model, the dynamics of 350

fixation differs between the two as shown in Fig 4D. The MFPT for a successful invasion 351

is larger for the Moran model than the spatial model in the neutral case. This is also 352

true for for an invader with a fitness difference: successful invasions fixate more rapidly 353

in the presence of spatial exclusion than in the well-mixed model. 354

Additionally, we find that the average MFPT of a successful invasion in the spatial 355
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A B

C D

Fig 4. Invasion into a fixated channel. (A) Illustration of the invasion/mutation
model wherein an invader (blue) with selective advantage s infiltrates a native population
(orange). The invasion is shown at the center for illustrative purposes. (B, C, D):
Numerical solutions to the Master equation for the spatial model (× connected with
solid lines) and Moran model (+ connected with dotted lines). (B) The probability of
successful invasion as a function of the insertion location (N = 100). Invasion events
at the center of the channel are the most successful, but a selective advantage by the
invading species can greatly increase the range of locales over which an invasion might
succeed. (C) The average probability of successful invasion obtained by averaging the
probability of successful invasion at all locations along the micro-channel. For s = 1,
both models show similar behavior. (D) The average MFPT of a successful invasion in
the spatial model decreases as population size increases, opposite the prediction of the
Moran model. Moreover, as the selection advantage increases, so does the MFPT.

model increases with fitness advantage, reminiscent of the behaviour of the MFPT 356

Fig 3B&C. This is contrary to the intuition that higher selective advantage should 357

accelerate the fixation of the invasive species because the fitter invader grows more 358

rapidly. A successful invasion must go from the two interspecies boundaries to one 359

interspecies boundary before taking over the channel; thus, the MFPT is limited by the 360

one boundary MFPT which increases with fitness advantage as shown in Fig 3B&C. 361

Quantitative investigation of different dynamical regimes in large 362

systems competing in a tug-of-war 363

The dependence of the fixation time on system sizeN is of importance when interpretating 364

experimental results that commonly probe only the transient composition of evolving 365

ecosystems. In Fig 3C we have numerically seen that the asymptotic behaviour of the 366
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MFPT to fixation shows subpolynomial growth in N for the spatial exclusion model. In 367

this section, we investigate the large N scaling of MFPTs - a regime relevant for many 368

experimental systems that are often comprised of large numbers of individuals. 369

The one-dimensional Fokker-Planck equation for the MFPT to fixation, Eq 3, may 370

be rewritten as 371

−1 =
B(x)

2N
∂x

(
e−U(x)∂xτ

)
, (12)

where 372

U(x) = −2N

∫
x

dy
A(y)

B(y)
. (13)

U(x), sometimes referred to as the Fokker-Planck potential, describes an effective 373

potential landscape in which the boundary between the two species moves. A general 374

compact integral form of the solution to Eq 3, which is shown in S1 Appendix, can be 375

evaluated for different potentials representing different population dynamics. 376

For the model defined in Eq 7 and Eq 8, U(x) is a unimodal distribution with an 377

unstable maximum found at xmax = 1/(1 +
√
s) for s ≥ 1 (see Fig 5A). Thus, unlike 378

the more familiar problem of calculating the MFPT to cross over a potential barrier 379

(Kramer’s Theory) [75], here we are interested in finding the MFPT to descend from 380

a potential peak starting at an unstable point. This subtle distinction means that the 381

saddle-point approximation - which is commonly employed for getting the scaling of the 382

MFPT in Eq 3 - is inadequate in this case. 383

A B

Fig 5. Heuristic approximation of the MFPT. (A) Graphs of the potential U(x)
with the location of the maximum, xmax = 1/(1 +

√
s), indicated at the peak of the

curves. The shaded areas represent regions along the channel, x, where the stochastic
behaviour heuristically dominates the dynamics (N = 100). (C) The maximal mean
fixation time (solid lines) as a function of system size steadily increases for different
fitnesses. The approximation τa(xmax) (dashed lines) is very close to the exact dynamics
when a constant τdif ≈ 0.4 is added to the deterministic time τdet.

To derive an approximation for the asymptotic behaviour of the fixation MFPT, we 384

heuristically separate the space into regions of predominantly deterministic or stochastic 385

dynamics. As shown in S1 Appendix, the boundaries between these two regions naturally 386

emerge from the integral form of the MFPT as the solutions to the equation 387

|U ′(xt)| =
√
U ′′(xmax)/π, (14)

and are depicted in Fig 5A. The boundaries Xt = [x−
t , x

+
t ] contain the region around 388

xmax where the dynamics are dominated by the stochastic diffusion with the location- 389

dependent diffusion coefficient B(x) arising from a ‘tug-of-war’ dynamics between the 390
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two species. Conversely, outside of this region, the dynamics are well approximated 391

as deterministic and are dominated by an ecological drift with a location-dependent 392

velocity A(x). 393

Thus, if the initial relative abundance of species 1 lies in the deterministic region 394

x ̸∈ Xt, the time to fixation is well approximated by the deterministic time τdet(x) of 395

Eq 10. On the other hand, if the initial relative abundance is in the stochastic region 396

x ∈ Xt, its motion is at first dominated by diffusion until it reaches one of the boundaries 397

within a time τdif(x, x
+/−
t ), after which it can continue along a deterministic trajectory. 398

The approximate mean time to fixation from within the stochastic region can be
written as

τa(x) = pdif(x → x+
t )

(
τdif(x, x

+
t ) + τdet(x

+
t )

)
+ pdif(x → x−

t )
(
τdif(x, x

−
t ) + τdet(x

−
t )

)
, (15)

where pdif(x → x
+/−
t ) is the probability that the relative abundance x diffuses to one of 399

the boundaries at x
+/−
t . 400

For illustrative purposes, we examine the fixation time starting at x = xmax given 401

that there is an equal probability to diffuse to either bound from this position. For the 402

neutral spatial exclusion model, the maximal MFPT is 403

τa(xmax) =
1

2
log(πN) +

1

2
(τdif

(
xmax, x

−
t ) + τdif(xmax, x

−
t )

)
, (16)

which is shown in Fig 5B. As shown in S1 Appendix), numerically τdif ≈ 0.4 and 404

is independent of N or other parameters of the model (further analysis is needed to 405

determine the constant analytically). The spatial exclusion model with selection also 406

exhibits a O(logN) scaling. For all selective advantages, we find that the difference 407

between the deterministic solution and the full solution is, somewhat surprisingly, a 408

constant (see S1 Appendix). 409

Discussion 410

Spatial exclusion significantly alters the competitive dynamics between species in densely 411

populated bacterial communities. Here, we have studied the competition between 412

two species of bacteria confined to an open 1D microchannel as a starting point to 413

understanding bacterial competition within more complex confined geometries. This 414

required the development of a spatial exclusion model that explicitly accounts for the 415

mechanical exclusion between cells, in contrast to non-spatial well mixed models such as 416

the paradigmatic Moran model. 417

We find that the probability of species fixation in the spatial exclusion model shows 418

a much sharper sigmoidal dependence on the initial relative abundance in contrast to 419

the Moran model where the corresponding probability is equal to its initial relative 420

abundance. The inflection point of the sigmoidal curve - where the probabilities of 421

fixation of either species are equal - is located at the initial abundance x = 1/2 for neutral 422

populations without selective advantage (s = 1), but shifts to lower initial abundances 423

of the fitter species (x = 1/(1 +
√
s)) at higher values of selective advantage. With 424

an increase in the population size, N , the sigmoidal curve approaches a step function, 425

effectively setting a threshold in the initial abundance above (below) which the cells will 426

always (never) fixate. 427

The mean fixation times in the spatial exclusion model are sped up in comparison to 428

the predictions of the Moran model by up to several orders of magnitude. Interestingly, 429

these fixation times have a very weak dependence on the total population size for 430
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most initial abundances, and are dominated by a quasi-deterministic exponential escape 431

towards fixation. Only for the initial abundances near the inflection point of the fixation 432

probability curve, where the maximum timescales are observed, does the fixation time 433

show a weak dependence on population size that is well approximated by an asymptotic 434

logarithmic scaling in population size. 435

Although the species with a selective advantage maintains a competitive advantage 436

within our spatial exclusion model, this competitive advantage does not affect the fixation 437

dynamics to the same extent as it does within the Moran model. Indeed, within the 438

spatial exclusion model, fixation occurs at lower initial relative abundances of the fitter 439

species than in the neutral model. However, the competitive advantage a bacterial 440

species gains by being more fit than its competitor is significantly less in this constrained 441

environment than in a well mixed system devoid of spatial limitations. Although births 442

of the more fit species happen more frequently, the spatial organization of the cells make 443

deaths of the more fit species happen more often as well (as they fall out of the channel) 444

resulting in a reduction in the competitive advantage compared to the well-mixed model. 445

Mechanisms that convey selective advantages can be difficult to maintain due to their 446

strain on metabolism and increased resource costs [84, 85]. Furthermore, competition 447

between species with higher fitness differences show longer fixation times despite the fact 448

that one of the species has a greater likelihood of dominating the channel. The slower 449

fixations are owing to slower diffusion relative to drift around the point of equiprobable 450

abundance. This means that not only must a species preserve a potentially more resource 451

intensive strategy to gain an advantage, but it must sustain this strategy for longer to 452

insure it dominates. Thus, the overall competitive advantage provided by an increase in 453

fitness must be weighed against these two competing effects. 454

Once one species fixates, competition is halted until another species is reintegrated 455

into the system through an invasion process. Overall, an invader with a selective 456

advantage increases the likelihood that an invasion at any location is successful, with the 457

invasions most likely to succeed occurring in the middle of the channel. Similar to the 458

Moran model, the probability of a successful invasion (averaged over all initial conditions 459

in the channel) decreases as the total population size increases. However, contrary to the 460

Moran model, the mean invasion times averaged over the initial channel location decrease 461

with system size. These fixation times accelerate in longer channel because successful 462

invasions with larger population sizes are reliant on the the invader species remaining 463

near the center of the channel, which fixates more rapidly. Consequently, successful 464

invasions in longer channels happen less frequently, but those that are successful are 465

more rapid on average. 466

In recent years, microfluidic monolayer devices (MMD) - such as mother machines, 467

chemostats, etc. - have been designed to study single cell bacterial growth and genera- 468

tional dynamics [66,86,87]. Our results model the behaviour of competing populations 469

in a single-lane, open chemostat and could be directly tested within such a device. 470

However, our spatial model can also be extended to more complex 2D MMDs that 471

support multi-lane channels. Pill-shaped bacteria, such as E. coli, are observed to grow 472

constrained to 1D lanes within wide, open-ended microchannels [57,58,88]. As a first 473

approximation, the larger channels can be viewed as many 1D lanes that interact through 474

rare immigration events. In this simplified view, the dynamics of channel fixation can 475

be decoupled from the lane fixation if the time between lane invasions is longer than the 476

fixation time within a lane. Accordingly, future work will combine the probability of a 477

successful invasion found in Fig 4 with the rate of invasion to model the 2D competition 478

as in Koldaeva et al. [57]. 479

For the 1D channel with fitness differences, we showed that one species is almost 480

deterministically favoured to out-compete the other when the initial relative abundances 481

are not close to the equiprobable abundance. By contrast, for initial abundances in a 482
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region close to the equiprobable abundance, the dynamics is dominated by stochastic 483

diffusion. Either species is, roughly, equally likely to take control of the channel within 484

this region with the two opposing species competing in a tug-of-war. Under the heuristic 485

assumptions concerning the regions of dominant dynamics, we find that the tug-of-war 486

concludes with one species outcompeting its rival in times that scale at most in O(logN) 487

when starting in the diffusive regime. This is significantly different from the paradigmatic 488

Moran model which predicts a O(N) fixation. 489

More generally, we have developed a heuristic framework to approximate the asym- 490

potic dependence (at large N) of the mean first-passage times in a tug-of-war process. 491

However, a (more) exact analytical solution to the Fokker-Planck equations of these 492

dynamics may be possible. For instance, various asymptotic expansions utilizing Wat- 493

son’s Lemma may provide satisfactory limits for calculating the MFPT integrals [89]. 494

Another promising future direction is a description of the bacterial spatial exclusion 495

as a single-file dynamics model. Single-file dynamics are concerned with the motion of 496

many particles along a line and can describe the mean squared displacement (MSD) of 497

particles in a channel [90], which is often slow. However, translating our spatial model 498

to an appropriate single-file dynamics model may uncover faster displacements akin to 499

our predictions. 500

The heuristic framework for calculating the asymptotic MFPTs is of general interest 501

and has applications well beyond bacterial population dynamics. The counter-intuitive 502

results concerning the competition of the species are due to these tug-of-war dynamics, 503

which may be applied to other systems with drift and diffusion terms leading to a concave 504

effective potential as in Fig 5A. Our analysis may be applied to other systems whose 505

dynamics are equivalent to the diffusion of a particle descending an effective potential. 506

For instance, the transport of organelles and other cellular cargo has been described 507

by a tug-of-war wherein competing sets of molecular motors pull in opposite directions 508

with the drift depending on the number of motors on either side of the cargo, much like 509

our model [91]. Moreover, competition between populations of cancer and healthy cells 510

display a tug-of-war effective potential that recovers a probability of cancer development 511

that is sinusoidal as a function of the initial relative abundance of the cancerous cells, 512

like in the spatial exclusion model [92]. Our methodology can predict the probabilities 513

of and mean-time to a clinical outcome to determine the rapidity of the disease. 514

In summary, we have shown that explicitly incorporating spatial interactions arising 515

from cell growth and division within dense bacterial populations can have important 516

consequences for both the overall composition and the rate of species exclusion from the 517

system. Our results provide insights into the processes involved in the formation and 518

maintenance of complex bacterial ecosystems such as biofilms, intestinal flora, or various 519

persistent infections. Likewise, the techniques developed here may more broadly be 520

applied to a range of competitive dynamical systems from cellular transport to cancer. 521

Supporting information 522

S1 Appendix. Derivations of the probabilities and MFPT to fixation We 523

review the calculation of the probability and exact mean first-passage time for the discrete 524

models discussed in this main text and the derivation of their corresponding continuous 525

Fokker-Planck approximations. The averaged quantities and invasion dynamics discussed 526

above are detailed and discussed. 527
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