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ABSTRACT

An elaborate network of genes defines the genetic profile along the anteropos-

terior axis of certain individuals in the Diptera family, establishing a robust pattern

that differs slightly between species. Differences in the segmentation gene pattern

of Drosophila and Anopheles suggest that the parameters defining their networks

evolved differently from the last common ancestor onwards. The study of the evolu-

tion of the network, defined by a set of differential equations, using our genetic algo-

rithm reveals a phenotypic pathway that explains these dissimilarities while conserv-

ing the necessary conditions for viable species. This computational search through a

model and parameter “hyperspace” using the genetic algorithm predicts homologies

between different stripe modules for the invariant target gene, eve. Additionally,

a network model is further developed to explain the polarity of the pair-rule gene

pattern expressed in the embryo, which suggests that ancestral Dipteran exploited

a dynamic network to establish a proper periodic pattern of the other segmentation

genes with respect to eve.
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ABRÉGÉ

Un réseau complexe de gènes définit le profil génétique selon l’axe antéro-postérieur

de certains individus de la famille des diptères et établit un modèle robuste qui

diffère légèrement entre les espèces. Les différences dans la configuration spatiale des

gènes de segmentation de Drosophila et Anopheles suggèrent que les paramètres

définissant leurs réseaux ont évolué différemment à partir de leur dernier ancêtre com-

mun. L’étude du réseau, défini par un ensemble d’équations différentielles, en util-

isant notre algorithme génétique révèle une trajectoire phénotypique qui explique ces

différences tout en conservant des conditions nécessaires pour garder des espèces vi-

ables pendant l’évolution. Cette recherche à travers un “hyperespace” de paramètres

en utilisant l’algorithme génétique prédit des homologies entre les différents modules

contrôlant les bandes de gène cible invariant eve. De plus, un modèle de réseau est

développé pour expliquer la polarité du motif de gènes de segmentation exprimés dans

l’embryon, ce qui suggère que cette éspèce ancestrale exploitait un réseau dynamique

pour établir un motif périodique des autres gènes de segmentation par rapport à eve.
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CHAPTER 1
Introduction

1.1 Developmental biology

It is an impressive feat of life itself that such unparalleled complexities, con-

strained by physical laws of nature, are attained in biological systems. The fact that

laws governing the dynamics of the inanimate establish an environment conductive

to the initiation and development of living organisms on different length scales is

spectacular. Given the prodigious task of studying and understanding such com-

posite organisms and the limitations on data, it is no surprise that traditionally the

biological fields have offered qualitative descriptions of systems rather than focus on

the intricate connections weaving the physical laws into animate descriptions of all

things living. However, the success of the physical sciences has thus far been due to

their methodical study of first principles and ability to offer quantitative descriptions

to exploit the different laws and concepts explored. In the last century, much work

has been done in developing mathematical frameworks to model biological phenom-

ena. Pioneers in the field have applied concepts and models from other disciplines to

develop frameworks in which to study biology. For example, Hans Meinhardt noted

how the formation of patterns from homogeneous initial conditions was not exclusive

to organic matter: we find similar patterning in sand dunes and forms of erosion (to

name a few). This influenced him in applying similar models from physics to study

pattern formation in biology[1]. Explaining the provenance of phenomena with a
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physics mindset is still not a practice that is common across all fields in biology and

yet it has yielded numerous successful results and is useful for developing functional

models.

The field of developmental biology focuses on studying the formation of structure

in biological systems and establishing an understanding of how complex multicellular

systems emerge from single cells[2]. This is a broad topic as systems undergo many

steps to form fully developed organisms and that, given the diversity of life, there

exists a multitude of different pathways for which species develop into their adult

structures. Nevertheless, many different organisms display similar tendencies and

apparent gene homologies throughout their growth suggest some universality[3][4].

Genetic expressions obtained experimentally give insight into the similarities

between certain species however constructing models for genetic regulatory networks

and phylogenies remains a difficult problem for most organisms. This leads us to

the question: is it possible to infer ancestral phenotypes and dynamics through data

acquired from their descendants, species emerging later in the phylogenetic tree?

1.2 Evolution and the genetic algorithm

At the core of any universal model for development lies the genes, blueprints of

the biological world. The genes are in constant contact with a dynamic environment,

whose interaction with said genes causes the formation of certain products. These

gene products hold many different functions within the cell[6] depending on what

information the genes have been provided by their environment. Hence, a description

of how these genes and their products interact as a whole is crucial to understanding

the steps of biological processes on a molecular level. From a global point of view,
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Figure 1–1: Above is a family tree of certain well studied Dipterans, placed according
to their proximity in their evolution. This shows the difference that the species
exhibit in terms of their gene profile along the anteroposterior axis in the embryo,
while maintaining a similar body structure. Below each picture of different species is
a graph of the maternal input genes and, below that, the graph of gap genes. Note
that . The question marks indicate locations along the axis where the profile of either
gap or maternal genes is not very well known. The pale outlines indicate weaker gene
expressions. Figure reproduced as in Quantitative system drift compensates for
altered maternal inputs to the gap gene network of the scuttle fly Megaselia
abddita by Wotton [5].

much can be learnt by finding the proper regulation scheme of the gene regulatory
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network (GRN). The problem with constructing adequate descriptions of these GRNs

is the scarcity of the data necessary to comprehend the interactions of these genes.

With an increase in computing power of late, development of computational

models for complex genetic networks has become a more feasible feat even if most

systems exhibit a multitude of possible states. The genetic algorithm[7] will serve

as our main instrument for exploring the genetic landscape of different species. In

a sense, the algorithm mimics the dynamics of Darwin’s evolution, evolving a popu-

lation through many generations using mutations and selection. However searching

through this complicated state space to find the proper network is not a trivial

task and, given the sparsity of the data, it is crucial to not exaggerate our model

by overfitting[8]. Finding a balance between variance and bias is a key concept of

machine learning and will justify our choice of network selection.

1.3 Motivation

Traditionally, experiments have been conducted primarily on model organisms

such as fruit flies (Drosophila melanogaster), e.g. mapping the genome sequence[9],

and zebrafish, (Danio (Brachydanio) rerio), e.g. studying the stages of embryonic

development in vertebrae[10], to infer the developmental processes. For this reason,

the study we conducted focuses on Dipteran embryogenesis and, more specifically,

on the case of Drosophila and some of its cousin species, namely Anopheles and

Clogmia, which have only recently become the topic of further investigation within

the experimental biology community[3][11].

Although data concerning the gene regulatory networks is sparse outside of

Drosophila, imaging of the gene expression for different species has provided us
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with sufficient information to construct phenotypic models of the cascade of genes

involved through embryogenesis. As such, we have spatial and temporal descriptions

of gene domains that pattern the embryo along different axis. Interesting questions

arise from these gene expression profiles: namely concerning the differences between

species pregastrulation. Much work has been put into modelling the networks during

these early stages of embryogenesis[12]. Although the anterior gap gene motif along

the anteroposterior axis remains invariant in all these species, the relative position

of two genes, gt and hb, is inverted in Anopheles and absent in Clogmia within

the posterior domain of the embryo. Consequently, pair-rule genes such as eve that

are presumably controlled by these gap genes exhibit dissimilarities in their pattern:

prior to gastrulation Clogmia expresses only six eve stripes, Drosophila has 7 and

Anopheles can have up to 8. Given these observations, it is not a completely trivial

task to construct networks with the proper regulation schemes to fit the data. For

example, it seems contradictory that eve 5, the module responsible for the fifth stripe

of eve in the Drosophila embryo[13], is repressed by gt and that we find a regular

striped eve at roughly that same position in both the posteriors of Clogmia and

Anopheles. We would expect that, given that the domain of gt is absent in Clogmia

and more posterior in Anopheles, the lack of a repressor for this eve 5 module would

result in an elongated stripe in both species. However this is not what is observed

experimentally as can be seen in Figure 1-2.

Furthermore, little is known about the regulation of pair-rule genes in most

other Dipterans[14], whether their positioning is directed by the maternal input and

gap genes[15] or dynamically controlled by a set of primary pair-rule genes (notably
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Figure 1–2: The formation of eve stripes in mosquito along the anteroposterior axis,
from left to right dorsal up. The scheme in (f) indicates the different expression
of the eve stripe with respect to the location of the gap genes. Note how the gap
gene varies considerably between the two, especially anterior gt, suggesting a change
in regulation scheme. Panels (a)-(d) show the expression of eve (stained in red) in
mosquito with the respective gap gene stained in blue: (a) hunchback, (b) giant, (c)
Kruppel and (d) knirps. We can see in (e) an eighth stripe forming in the anterior.
Figure reproduced as in Different combinations of gap repressors for common
stripes in Anopheles and Drosophila embryos by Goltsev [3].

eve) as in Drosophila[16]. Indeed, the complexity in the experiments required to

probe these gene regulatory networks in most organisms make them difficult to study,

however analogies can be drawn from known cases such as the Drosophila network

and searching for ancestral genotypes can give insight on how this regulation changed

through their split evolution.
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Given the experimentally available data described above, we focus on a par-

ticular instance of the question posed previously. In the specific case of embryonic

development of Dipterans, we search to answer the following: can some evolutionary

simulations generate phenotypic pathways from different species such as Drosophila

and Anopheles to exhibit the network of their last common ancestor and what can

we infer about the dynamics of the segmentation genes in this ancestral Dipteran?

1.4 Thesis overview

Following this brief introduction in Chapter 1 of the field of biophysics and mo-

tivation for the study, the thesis will subsequently present in Chapter 2 an overview

of the concepts necessary to tackle the questions regarding the segmentation genes,

presenting both the biological and mathematical framework with which we will be

working. The first concept described is Wolpert’s French Flag model in Section 2.1,

establishing a basis for obtaining positional information. Section 2.2 offers a biolog-

ical description of Dipteran embryogenesis, focussing on the details pertinent to the

study at hand. This is followed by a discussion on Gene Regulatory Networks in

Section 2.3, both a conceptual and mathematical description as well as the particu-

lar modelling chosen for our GRNs. Section 2.4 describes what is known about the

regulation scheme of the Drosophila network, giving the minimalistic network with

which we will be working.

Chapter 3 delves into the the genetic algorithm, starting with an overall view

of the structure of the algorithm. Sections 3.2 onwards describe each step in the

algorithm in detail and the choices that were made in each step regarding our own

study.

7



The results of the conducted research are presented in Chapter 4 with each

section focussing on one particular simulation. Section 4.1 deals with the simulated

evolution from Drosophila to Anopheles and Section 4.2 with the results of the

reverse simulations, that is from the last common ancestor toDrosophila. Section 4.4

presents the results that revisit the simulation from Drosophila to Anopheles with

the addition of a second pair-rule gene, ftz in the system to investigate incorporating

other segmentation genes to the network. Subsequently, the study of the polarity

and regulation of two more second pair-rule genes by the network is the subject of

Section 4.5.

Finally, Chapter 5 offers a discussion on the results presented in Chapter 4.

First dealing with the results from the evolution and the study of the polarity in the

embryo, we later discuss the genetic algorithm briefly in Section 5.2. To conclude

this thesis, Section 5.3 expands on potential future directions that may be explored.
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CHAPTER 2
Theoretical Framework

Historically, due to the lack of quantitative information, biological fields have

offered qualitative descriptions of systems studied, however in recent years the influx

of data and collaborative work with researchers from quantitative sciences have ex-

panded our understanding of these biological systems. For the questions addressed

in this thesis, a mathematical model of the gene network is necessary to probe the

underlying dynamics of the phenotypic evolution.

2.1 The French Flag Model

It is essential for cells within a developing organism to obtain some “positional

information” to allow for the functionality of the cell to be determined in terms

of its location in the system. By “positional information”, we mean the ability of

cells within an organism to detect where they are situated in the system. From an

exterior point of view it is clear to an external observer what is the front from back

of an embryo or to differentiate specific positions in the egg, but for cells within the

embryo there is no obvious way a priori to get a global view of their environment and

pinpoint their location. Thus there must be a mechanism for cells to differentiate

between locations of the body simply by probing their immediate surroundings as

this is their only source of information.
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Wolpert’s French Flag Model aims to explain this cell localization through the

use of morphogen gradients[17]. As the cell detects different molecules in its envi-

ronment it gets a sense of the concentration of these different components, termed

morphogens, in its surrounding. The fate of the cell will depend on the concentra-

tion sensed by the cell of particular morphogens. For example, imagine a morphogen

gradient along a certain axis in an embryo that is highly concentrated on one end

and gradually diffuses to low concentrations on the other end, such as in Figure 2-1.

The cells have further been programmed to detect this concentration gradient and

know that at high concentrations (above a certain threshold) they are to be “blue”

cells, whereas at low concentrations (below a certain threshold) they are to be “red”

cells. In between these two thresholds, the cells are fated to be “white”.

Thus from the morphogen gradient already in place, we see that the cells gain

some form of positional information and their cell fates establish a French Flag pat-

tern along the specified axis of the gradient. This is the principle of the model put

forward by Wolpert and it has since been used to successfully model many phenom-

ena, from limb regeneration[19] as well as pattern formation in Drosophila[20].

The positional information can be increased by the number of thresholds deter-

mining cell fate[21]. This is generally speaking more difficult to do for one particular

morphogen as the system might have a limited accuracy in differentiating certain

concentrations. However, given multiple morphogens, the positional information can

potentially increase by the cells ability to read the concentrations of each separate

morphogen and the subsequent thresholds those morphogens might have determined

for a particular positional marker. In fact, the question of whether or not multiple
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Figure 2–1: The French Flag model seeks to explain the acquisition of positional
information through the use of morphogens. The depiction in the figure shows how a
gradient of a morphogen can determine some boundaries within the system through
the use of thresholds in its concentration and establish a pattern along the axis of
this morphogen. Figure reproduced as in Principles of Development by Wolpert
[18].

genes can increase the amount of positional information is a delicate one. It will

depend on the ability of the system to distinguish between concentrations as well as

the concentration profile of the input[22].
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Figure 2–2: The information that a profile concentration carries (I(g;x)) can vary
greatly from profile to profile, where g is the concentration of the morphogen. Panel
(A) depicts a on-off and 1 bit of information as there are simple 2 regions. The
sigmoidal function in (B) increases the information as there are a multitude of dif-
ferent positions along the axis given certain concentrations. Clearly the positional
information is greater than 1 bit since there exists a cutoff at 0.5 which distin-
guishes the two regions. Similarly for the linear gradient in (C). The Figure repro-
duced as in Positional Information, Positional Error, and readout Precision in
Morphogenesis : A Mathematical Framework by Tkacik[22].

In Figure 2-2, the mean gene expression profile (plotted as a solid black line)

determines a certain position in the cell and the grey zone represents the variability

(σg) of the profile, in other words how well the system can distinguish a certain

concentration. As the variance increases and the profile of the gene concentration

changes, the information the concentration carries varies greatly. Questions regarding

the transfer of information are of great interest in developmental biology. It is not the

focus of our study here and for the purpose of this thesis it is enough to assume that

information about the product concentrations is transmitted to subsequent genes in

the cascade of gene expressions[23].
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2.2 Dipteran embryogenesis

The developmental process for many Dipterans, including Drosophila, starts off

well before the fertilization of the egg. The unfertilized egg is subject to an initial

polarization of maternal input along its different axis[24] depending on its position

within the mother’s ovary. In Drosophila, maternal-effect genes, such as bicoid

(bcd), nanos (nos)[25]and torso (tor)[26], produce morphogen gradients of their sub-

sequent RNA and protein products throughout the egg along the anteroposterior

and dorsoventral axis. Starting at the moment of fertilization, the nucleus undergoes

multiple mitotic divisions[18] and the number of nuclei in the embryo grow expo-

nentially. Unlike other zygotic embryos, the individual cells will not form for each

nuclei until later in development, thus allowing for protein products encoded by the

genes of these nuclei to diffuse freely within the embryo. After 8 nuclear divisions,

256 nuclei are formed within the egg and migrate to the cellular membrane of the

embryo[27], where mitosis continues to occur. These nuclei spread in a relatively

uniform distribution along the periphery of the cell and begin transcription.

Transcription is the process through which genes synthesize RNA. The location

along the DNA that initiates this transcription for the gene is referred to as the

promoter for the gene. Transcription factors are proteins possessing specific activator

and/or repressor sequences of nucleotides that will only bind to their associated

promoter sites, initiating/respressing the transcription of that gene. Once attached

to the DNA, the RNA polymerase copies the sequence to form a messenger RNA

(mRNA) which is then released into the cytoplasm to be synthesized into a protein.

This whole mechanism, the “central dogma” of molecular biology, is the basis for all
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other operations that occur within a cell, as it produces the necessary molecules that

drive the machinery of the organism.

Thus, this production of a protein by any particular nucleus is determined by

the concentration of regulating transcription factors at the position of that specific

nucleus. It is this protein production that is modelled in this study, neglecting the

mechanisms of translation and other dependencies in the cell. Along the antero-

posterior axis, the original maternal-effect gene gradients serve as input for, mostly,

activation[28] and, in some cases, repression[29] of a first set of genes in the genetic

transcription cascade, called gap genes. These gap genes encode for the production

of other protein products that will themselves serve to regulate expression of a set

of segmentation genes[30], as is depicted in Figure 2-3.

This is the structure of our gene regulatory network. The particular gene expres-

sion of a nucleus can be viewed as the concentration of the products of transcription

by this gene at a given position. Along the anteroposterior axis a profile of the

concentration of gene expressions appears at this stage of embryogenesis. After the

thirteenth nuclear division, cellular membranes begin to form around each nucleus at

the edge of the embryo, enclosing the nuclei with their surrounding cytoplasm. Cells

can be viewed as machines that work with a function depending on their nature and

the components enclosed within the membrane of the cell at this stage determine the

cells functionality in the organism, defining their development and fate thereafter.

The role of the segmentation genes, according to their concentration levels at

a position, is to establish segments within the embryo that will define the different

structural sections of the adult body[31]. In Drosophila, the segmentation gene

14



profile splits the embryo into 14 segments generated by sets of pair-rule genes with

seven evenly spaced stripes having similar width. Certain of these segmentation

pair-rule genes appear before others, regulating the secondary pair-rule genes in the

same manner the gap genes regulated their own expression. In this hierarchy of

segmentation genes, even-skipped (eve) is one of the first to appear[32] and is the

main focus of this thesis as its regulation is well understood in Drosophila[33].

Although all the pair-rule stripes appearing in the anteroposterior view are the

expression of the same gene, they are in fact regulated by different transciption

factors. That is to say that along a DNA strand there is one loci that encode for eve,

however this loci is controlled by multiple modules, i.e. promoters sequences[30].

Thus the gene regulatory network that controls the gene expression of one particular

stripe might not be the same as another stripe. For example, in Drosophila there

are five eve modules: eve 1, eve 2, eve 3+7, eve 4+6 and eve 5.

As seen previously, different members of the Dipteran family have very different

gene expression profiles in their embryos and this is the motivation for this thesis.

For the most part they maintain similarities in terms of the nature of the genes

that can be found throughout the egg during embryogenesis, however it is the gene

regulatory network that demonstrates dissimilarities in terms of the strength of the

interactions between gene expressions[35]. This leads to varying gene expression

patterns across the anteroposterior axis. Notably, the position of gap genes is con-

siderably different between the species Drosophila and Anopheles (mosquito) while

the target pair-rule gene eve is invariant. This lead us to hypothesise that there are,

between the two species, a displacement and slight redistribution of the eve modules.
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By redistribution, we mean that the modules expressing certain eve stripes in the

Drosophila profile seem to now be homologous to other stripes in the Anopheles

profile. We propose that Drosophilas’ eve 5 does not exist in Anopheles[3] and

predict an additional stripe forming in the back of Anopheles to maintain a 7 stripe

profile.

2.3 Gene regulatory networks

With the already high complexity of the environment only increasing as cells

undergo development it is hard to study and characterize individual reactions, how-

ever it is apparent that some underlying structure maintains some order that can be

exploited in the system. Most activity in the cell occurs through the complicated

regulation scheme of the reactants and different components that interact with each

other to form a network and define the systems state. The products and connections

that relate the interactions between these different substances is known as a gene reg-

ulatory network[36]. It is a graphical model where the network is completely defined

by these transitional probabilities and state probabilities of the state variables.

By studying the gene expressions and correlations between the different prod-

ucts in the network it is possible to model the appropriate regulation scheme defining

the network[37], abstracting the complicated chemical dynamics into a simpler illus-

tration of cause and effect. The gene regulatory network is often described as a

collection of nodes (representing the genes) with edges (representing reactions) that

connect the nodes. The input and output of each node control the state of the nodes

much like a neural network[38]. The edges, essentially interactions between genes,
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can be separated into two categories: inhibitory and inductive. Inductive interac-

tions allow for a sigmoidal increase of the output whereas inhibitive interactions lead

to inversely sigmoidal changes in output given an input. The nodes can be regarded

as functions that take the input through some combination of basic functions to pro-

duce the output and characterize the dependence of the environment on each genes

state. The gene expression is defined by the output of each corresponding node. A

variety of edge schemes connecting the nodes allow for the modelling of different phe-

nomena in this graphical view. For example, an edge connecting a node to itself is

an instance of a feedback loop: a process where the output of a gene would, through

some mechanism, come back as input to the gene as in [39]. By adding more edges

we change the complexity of the systems structure and vary the connections between

nodes. Defining these nodes and how they process their input determines the output

of each gene and it is the study of these models that uncovers the complex’s dynamics

which can be tested experimentally to study the correlations between genes.

A common mathematical approach to modelling these gene regulatory networks

is through the use of ordinary differential equations[40]. The dynamics of each node

is expressed as an ordinary differential equation that governs the concentration of

each gene expression. Thus a set of differential equations is necessary to explain

the network and steady state solutions represent the systems stable states. Having

a functional form for each state as a function of time allows for the study of the

dynamics of these states out of equilibrium and their response to perturbations in

the input. The production term is defined by the node and is a function of all the
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input to that node. Additionally, to be biologically viable, a degradation term is

present to account for the natural turnover of the proteins.

The production terms in our differential equations model the gene expressions

response to the input. In a Boolean network where the state of each gene is either

ON or OFF, these can be defined as products of Heaviside step functions where the

input is either there or it isn’t. It is possible to model a more continuous state space

where the state of the gene is defined by the concentration of the gene expression.

A more smooth (that is to say less discontinuous than a Heaviside step function)

way to evaluate the information provided by the input is to use sigmoidal or Hill

functions to regulate the production of the gene expression.

Hill functions describe the response of a certain concentration of input to an

established threshold of activation. In biochemistry, they are mostly used to explain

the binding of certain molecules to receptors[41]. We consider the reaction

Afree + nX
k+−⇀↽−
ki

Abound (2.1)

where n is the number of molecules of type X that it takes to bind to the binding

site A to produce the bound state A∗ with rate k+ and the opposite reaction at a

rate k−. The expression that relates the appropriate concentration for each of the

reactants and products is

[Afree][X]n = k+[Abound]. (2.2)
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Combining this with the condition that the concentration of receptors A(either bound

or unbound) do not change

[Afree] + [Abound] = [A∗] (2.3)

we can derive the fraction h of bound and free particles to the total amount of

receptors:

h(bound) =
[Abound]

[A∗] =
Xn

Cn +Xn
h(free) =

[X]

[A∗] =
Xn

Cn +Xn
(2.4)

where Cn = k+. These are Hill equations, monotonically increasing and decreasing

functions of the concentration of the reactant [X] which give the fraction of free or

bound states. These can be written in a convenient way to summarize the dynamics

of repression or activation by a particular gene X through the following equation

hill(X,C, n) =
1

1 + (X/C)n
. (2.5)

where we have generalized n to range the positive and negative real numbers. In

the context of our regulatory gene network, C, the concentration at half maximum, is

a threshold over which our gene X has an effect on the studied gene in it’s production

term. The strength of this effect is governed by the magnitude of the Hill coefficient

n and the effect itself is established by the sign of n. A negative Hill coefficient

denotes an activation whereas a positive Hill coefficient designates a repression by

the gene.

In our Drosophila network, different activators and repressors manage the con-

centration of the gene expression production. Although repressors work in unison
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to inhibit the activity of a particular gene, the activators compete to activate their

particular DNA sequence, thus only the highest rate of production for activators is

processed. This is as modelled in previous work by François et al. [37].

dXi

dt
= max

nij<0

{
1

1 + (Xj/Cij)nij

} ∏
nik≥0

1

1 + (Xk/Cik)nik
− δiXi (2.6)

In some cases the dispersal of the genes across the environment is non-negligible,

thus a diffusion term can be added to this differential equation to more accurately

define the dynamics of the products, with diffusion coefficient D. We obtain a PDE

which can be solved using numerical methods in a similar fashion to the previously

presented ODE. We will see that for most of the genes in our gene network it will

not be necessary to model diffusion.

dXi

dt
= max

nij<0

{
1

1 + (Xj/Cij)nij

} ∏
nik≥0

1

1 + (Xk/Cik)nik
− δiXi +D

∂2Xi

∂x2
(2.7)

Using this formalism, we can describe the effect of morphogens on the genes

as is suggested in the French Flag model, with the concentration at half maximum

defining the threshold and the Hill coefficient determining how steep this pattern is

at a certain position. Thus we can acquire positional information from these different

gradients.

2.4 The Drosophila gene network

The gene network of Drosophila during embryogenesis, although extensive, is

well understood in a qualitative manner: The regulation of the essential genes for

development are well mapped and studied. Our idealized Drosophila network is one

that contains the strictly necessary genes to establish a minimal profile of the studied
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pair-rule genes eve and, eventually, fushi tarazu ftz. Although other genes, such

as shadow enhancers[42], exist in the network and adjust our gene expressions, we

argue that they are not necessary for the qualitative pattern to arise, thus are not

included in our network.

The maternal gradients are supplied by bcd in the anterior and caudal (cad) in

the posterior. In the evolutionary simulations, we assume that some other maternal

gradient such as orthodenticle (otd) replaces bcd[43]. cad is itself regulated through

a slight repression by bcd, keeping it maintained in the posterior. Additionally, two

posterior gradients huckebein (hkb) and tailless (tll) allow for additional repression

and activation of subsequent posterior genes such as hb[44][45].

These initial inputs regulate the downstream gap genes giant (gt), hunchback

(hb), Krüppel (Kr) and knirps (kni) which are the sufficient components to define

our segmentation gene pattern. All of these gap genes are activated by different

thresholds of bcd. Additionally, gt is activated by cad in the posterior[46] while

being repressed byKr situated in the middle of the embryo and an anterior repression

suppied by tll. Other than the bcd activation, the rest of the regulation scheme of hb is

not entirely understood and different models attempt to explain its gene expression.

Thus, we simply model its posterior dynamic through an activation by tll and a

repression by hkb, which is sufficient to obtain the desired profile. kni is repressed

by Kr, tll and hb[46][47] whereas Kr is repressed by gt[48][49] and hb[50]. In many

Dipterans the anterior segmentation gene expression in the embryo is relatively well

conserved whereas the posterior is subject to more differences. This will be a key

concept in our later discussion and is a consequence of the fact that the anterior and
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posterior domain of genes such as gt and hb are regulated by different modules of

repressors and activators.

As stated previously, the gap genes work in unison to control the production of

the segmentation genes eve and ftz. Each module has its own regulation scheme that

is summarized in Figure 2-4 along with the regulation of the gap genes. There are

five different modules to model: eve 1, eve 2, eve 3+7, eve 4+6 and eve 5[47][51][52].

Note that as it is primarily the gap gene expressions in the posterior that vary

between the species: the eve 1 module is invariant and thus not present in most of

our simulations. For the other modules, the posterior repressions of these modules

are assumed to come from some posterior gradient, thus we’ve chosen to use tll[13].

When no activator is indicated, it is assumed some constant activator is present in

the system, such as DSTAT[53] or Zelda[54]. Figure 2-6 shows how each of the eve

modules are combined to form the complete eve profile, which is the same way the

ftz modules do the same.

Note that the ftz 4 stripe represents a special case where the module does not

seem to have a stripe pattern element through its gap gene regulators, experiments

suggest that it is controlled instead as a secondary pair-rule gene[14] (downstream

of the zebra pattern in the genetic cascade) while still maintaining some repression

by the gap genes tll and hb. We’ve added a slight repression by eve to illustrate the

second pair-rule gene nature of ftz 4.

Thus we have our initial network that is defined as the minimal gene regulatory

network of Drosophila for our target genes eve and ftz. This is the network whose

parameters we will evolve through generations of mutations to hopefully obtain a
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network consistent with the gene profile of Anopheles. Although some of the pos-

terior genes are regulated by different genes, for the sake of this study it is only

necessary that we get the posterior regulation in both species. It could be that some

new regulation scheme involving different genes developed in a last common ancestor

that explains this discrepancy between the species[43].
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Figure 2–3: All the information for the segments in the body plan of Drosophila
postgastrulation is initially specified by the mother and cascades from the maternal
input. The top panel has an example of one particular maternal gene, bicoid, which
the mother provides to the embryo. This input passes on the positional information
to gap genes such as hunchback (subsequent panel) who themselves regulate the
segmentation gene pattern (third panel from the top). This hierarchy of genes along
the anteroposterior axis establishes the parasegments and morphology of the egg,
depicted in the last panels. The arrows connecting the panels indicate the gene
cascade, that is to say the progression in the regulation scheme. Figure reproduced
as in Principles of Development by Wolpert [18].
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Figure 2–4: (A)-(B) Simulated gene expression profile of the maternal input and the
gap genes across the embryo. (C) The profiles of the segmentation genes eve and
ftz. Position 0 indicates the head of the embryo and position 200 the tail. (A’)-(C’)
The corresponding network structure used in our simulations and described more in
detail in the text. The strength of the interactions are tabulated in Appendix A.
Whenever no activator is present, a generic spatially uniform activator is assumed.
Figure from our published article Predicting Ancestral Segmentation Phenotypes
from Drosophila to Anopheles Using In Silico Evolution[34]
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Figure 2–5: Examples of activator and repressor hill functions accoring to different
values of the hill coefficient, n in the hill equation f(x) = 1

1+(x/C)n
. C = 0.5 in these

examples as can be noted that it is at 0.5 along the abscissa that the function attains
it’s half-maximum value. Note that as the |n| increases, the function becomes more
steep, in fact limn→∞ f(x) is a Heaviside function.
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Figure 2–6: Individual modules for eve (in grey) activate the final common eve
pattern (in red). The same mechanism is true for ftz, this allows for a more uniform
pattern with regular sized stripes.
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CHAPTER 3
The genetic algorithm

With an established model for the gene regulatory network, we now turn to

the problem of evolution of this network. The genetic algorithm is our main tool

in answering the questions this thesis addresses as it establishes a framework for

tackling evolutionary inquiries and, in a way, simulates the evolution that we are

trying to study. They are a subset of evolutionary algorithms, used in a variety of

problems to optimize parameters[55]. This particular genetic algorithm is the same

used by François et al. in previous works, which can be found in [56][57]

3.1 Structure

The genetic algorithm is a heuristic search, through some complicated state

space, that simulates natural selection. In other words it is a computational method

for evolving a population of genotypes, selecting at each generation the individual

that optimizes for some characteristic that is defined by the problem at hand and

then mutating these solutions to find additional candidates in further generations[58].

The first step in this algorithm is to initialize a population composed of individu-

als that have randomly distributed solutions of their genotype in some representation.

This step is shortly followed by a selection process in which each individual solution

is evaluated and given a score based on a constructed fitness function. This fitness is

designed to optimize the target genotype appropriate to the study conducted. This

is analogous to searching for a solution that minimizes the energy, defined by the
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problem, studied through some complicated state space from physics. Subsequently,

the selected individuals are used to create a second generation population through a

combination of genetic operations such as mutation, selection and other operators.

In a sense, this is the simulated “breeding” step in which the most fit individuals

pass on the properties that deem them as fit in our evolutionary framework. The

process of creating new generations continues until some termination condition is

reached by the algorithm. This is in accordance with many genetical theories of

nature selection[59]. Each step is described in more detail below.

3.2 Initial Population Configuration

As noted previously, the first step in the algorithm is designing an initial popu-

lation. This involves finding a proper representation of the solution domain, keeping

in mind that this representation will have to adequately define the genotypes for the

problem at hand.

In our simulations, the initial population is completely comprised of individuals

all possessing the Drosophila genotype that we are studying. Since we are explor-

ing the evolutionary dynamics from Drosophila to Anopheles it is a logical choice

that the starting point would not to be a random set of individuals but rather all

individuals from the same species. This will allow for a more extensive search of

the parameter space in later iterations of the algorithm. The genotype is defined

by the set of parameters that relay the information concerning the network, i.e. the

Hill coefficient and concentration at half maximum for each interaction. Thus, the

genetic representation of our solution domain is an array of Hill parameters, θ, and
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it is the numerical value of these parameters that will be explored and changed from

generation to generation, defining new solutions.

As described in section 2.4, the interactions that define the network qualitatively

are known for Drosophila and fixed in our simulations. However, exact quantitative

results in terms of the strength of the interactions between the different genes is

not well documented and in fact quite difficult to describe. For our model, what is

important is that we can explain the difference of the segmentation gene patterns.

A set of “kernel” functions are used to model the interactions between genes in

the network: these are functions that define a certain relation between two genes.

In our framework, these are the Hill functions that relate a repressor or activator

to its target gene. Thus, the parameters of these kernels were manually tuned to

provide a gene profile in the anteroposterior axis that readily resembles the profile

in Drosophila. This is sufficient in the framework of this project. The parameters

that comprise our initial gene regulatory network are tabulated in Appendix A.

As stated previously, the gene regulatory network that describes the expression

of the gap and pair-rule genes is only slightly different in the posterior for Anopheles,

however for the sake of simplicity our model has them defined as the same. Which

is to say that the algorithm doesn’t create new kernel functions or add new input to

these kernels. Thus we would expect that to go from one species to the next we need

only evolve the parameters to match the parameters of Anopheles, while maintaining

what we will later define, through the fitness function, as live species throughout the

evolution. Additionally, we ran the genetic algorithm to simulate the evolution from

the LCA, Last Commom Ancestor, to Drosophila and in this case the starting point
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for the initial population was a last common ancestor phenotype, exhibiting a very

posterior gt. The parameters that establish the initial configuration were, as in the

case for Drosophila, manually adjusted to qualitatively explain the gene expression

profile in LCA and are tabulated in Appendix B.

In our simulations, the size of the population was maintained throughout the

evolution at 50 individuals, relatively small for genetic algorithms, to cut on compu-

tation time. In fact after trying for a variety of sizes it was deemed the dimension

of the population had very little impact in our situation on the range explored in

the phenotype state space and the ensuing results, although different sizes of pop-

ulations can be tried[60]. Running the algorithm on multiple machines and many

times allowed for a broad exploration in a similar manner, as it is possible to pick

up from the last solution found by a previous simulation and continue the algorithm

from that point forward.

3.3 Fitness Selection

As stated previously, what differentiates the genetic algorithm from a random

walk through the state space of the solution domain is the selection of the most

adequate solutions by a fitness function. The fitness function defines a topology, a

|θ|-dimensional energy landscape for the representation of the phenotypes. The idea

is to construct this topology such that it establishes a minimum at the desired optimal

solution[61][62]. As such, the fitness corresponds to a measure of each solution on

this topological space. Through iterative steps the genetic algorithm scores each

individual in each generation and tries to find this minimal solution.
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Our fitness reads the values of the Hill parameters for each individual, solves

the differential equations defined in Section 2.3 and outputs the gene expression con-

centrations across the embryo. These concentration profiles are used to differentiate

between the networks in a population and select the most fit individual. As stated

previously, the target profile of Anopheles exhibits an expression of gt that is so

late/posterior it seems irrelevant to the formation of the segmentation genes. Since

it is basically non-existent in the target network, the integral of the gene expression

of gt in the posterior is a good indicator in the fitness as minimizing the integral will

provide the desired gt profile, i.e. eliminating it.

Furthermore, since the anterior of the eve profile is conserved, the difference

between the anterior initial eve profile and anterior eve profile in the individual

scored is also calculated for use in the fitness function. However to prevent this

condition from becoming too restrictive in the evolution of parameters, only the

maximum of the eve difference and the difference of hb in the individual scored to a

predetermined hb target profile contributes to the score in the fitness function. This

allows the profile of eve in the anterior to vary slightly only if it means that the hb

profile moves towards the profile it would have in Anopheles.

It is important to note that the high dimensional energy landscape is rather

complicated and allows for many different paths. However, given that we search

for a viable pathway between the two species Drosophila and Anopheles, we need

to assure that every generation in between contains a species that is biologically

realistic. That is to say we want each Dipteran generated to be a live species. Given

we cannot experimentally study the said phenotypes for ancestral Dipterans (the
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very reason for this study), it falls to us to select what we mean by a live species

in this context. This is where the number of stripes becomes relevant. Experiments

have shown that although certain species in the Dipteran family, such as Anopheles,

can have more than seven stripes of segmentation genes, having less of the stripes

prior to gastrulation is in fact a problem. Indeed, Drosophila mutants and other

Dipteran mutants exhibiting 6 or less stripes did not survive to adulthood. Thus our

fitness assigns an incredibly large score to phenotypes that exhibit less than 7 eve

stripes (similarly for ftz when it is present in the simulations).

Additionally, the simulations containing ftz included another condition to insure

that a proper pattern is displayed, an alternation between the two segmentation

genes. Similar to the condition on the number of stripes, if the pattern produced

by the differential equations does not exhibit an alteration between eve and ftz, the

network is assigned a high score so that it will be discarded by the genetic algorithm

as a poor solution.

Finally, for the simulations concerning the inverse evolution from the least com-

mon ancestor to Drosophila the target solution is now the Drosophila segmentation

pattern and so the choice of fitness function must reflect this new aim. Using our

previously calculated concentration of gap genes for the Drosophila network, we de-

fine the fitness as the sum of the difference between the individuals gap gene profile

and the Drosophila gap gene profile, as well as the condition for a minimum of 7

segmentation stripes. Further information, examples and detailed expressions for the

fitness functions can be found in Appendix C.
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3.4 Genetic Operations

Once each individual is scored and ranked within the population, the algorithm

selects a subset of the current population to be carried over and fashioned, through

some set of genetic operators[63], into the next generations population. This is the

step that creates genetic diversity and is the exploration of the solution domain.

There are various ways to pass on the genetic code of a population onto the

next generation. The first step is the selection of the individuals who carry over their

genetic makeup (parameters θi). The fitness function indicates which individuals are

more fit in context and so selecting the individuals according to their score allows

for a subsequent population closer to the desired result. For our simulations the top

half of the population, ranked according to score, were used to generate the next

generation. Although crossovers, the process of recombining the genetic material

(parameters) from different parents, are often common in genetic algorithms we

have chosen to omit this recombination and stick to only introducing mutations into

the new population. Only mutations, changing the parameters at a certain rate

(which is transcribed in Appendix C), are employed by the algorithm to produce

new individuals. Thus our new population is composed of the individuals carried

over after selection and, for each of these individuals, a mutant that carries different

parameters from its parent according to the rate of random mutations on the genes.

3.5 Termination of the Algorithm

The process of searching through the solution domain and selecting the best

individuals to breed new generations continues until some termination condition is
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reached by the algorithm. To increase efficiency, the convergence of genetic algo-

rithms towards solutions can be studied to optimize the fitness function[64] There

are many candidates for potential termination points, each suitable for the type of

problem at hand. Ideally, the end step of the algorithm produces the target genotype.

In our situation, the fitness defined above serves as an optimization tool for

which zero is a quantitative lower bound. However, this lower bound is difficult

to achieve, considering the restrictions on the profiles of genes which define the

fitness. Thus terminating the code only when this lower bound is achieved is an

unreasonable demand. Finding a condition for convergence is equally complicated

as the mutations are random and so simulations plateau for many generations at a

certain fitness score before finding another combination of parameters that reduces

the fitness score. The stochasticity and variability of the process means that finding

a regular pattern in the evolution is difficult and defining some trend or tendency

that the fitness exhibits is non-trivial. For these reasons, using a preprogrammed

maximum number of generations for termination is a sensible choice. For more on

the convergence of our genetic algorithm, Appendix C contains some examples of

the fitness across some simulations which shows how different simulations can take

considerably different routes to reduce their score.

The termination of the algorithm concludes the simulation and it is then possible

to study the pathway of the most fit individuals throughout the evolution. It is

mostly through the defining different fitness functions and genetic operations different

pathways can be explored, however for the purpose of this study the ones defined

previously are sufficient.
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CHAPTER 4
Results

The results and figures described below were published in the paper Predicting

Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In

Silico Evolution Rothschild JB, Tsimiklis P, Siggia ED, Franois P (2016) Predicting

Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico

Evolution. PLOS Genetics 12(5): e1006052. doi: 10.1371/journal.pgen.1006052[34].

As described previously, the difference in the gap gene expression pattern between

Drosophila and Anopheles lies in the relative positioning in the posterior domains

of hb and gt. In Anopheles there is a forward shift in the peak of posterior hb relative

to it’s positioning in Drosophila and as for posterior gt, the peak becomes expressed

much further in the posterior making it an unlikely candidate for regulating any set

of stripe boundaries. As for the rest of the gap gene network, very little changes and

the rest of their profiles between the two species are generally conserved.

The difference in gap gene profiles across different Dipterans causes a distinction

in the pair-rule gene description for each species. The formation of the eve 5 stripe

(which has a posterior boundary defined by the gt posterior domain in Drosophila)

is a problem in the evolution. As this region of gt is not located anteriorly enough

in Anopheles and is completely absent Clogmia, it is implausible that such an in-

teraction regulates the expression of the stripe in those species. The question thus

becomes one of finding a pathway that “dissolves” the gt expression while allowing
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for other stripes of eve to take the place of eve 5 in Drosphila. In accordance to

this, the relation between other eve stripes in the posterior is rather different which

could imply that the regulation scheme for the pair-rule gene has changed between

these insects. For example, the sixth and seventh stripes are situated symmetrically

on either side in the gt posterior domain in Drosophila (anterior to the hb domain)

whereas in Anopheles the sixth and seventh stripes are found symmetrically about

the hb domain. Additionally, a weak eighth eve stripe is present in the posterior of

Anopheles.

In the description that follows, we simulated the phenotypic evolutionary path-

way between Drosophila and Anopheles using computational tools and the genetic

algorithm described above, inferring a LCA along the way. Solutions were found

using appropriate fitnesses described in previous sections and were found multiple

times across many simulations. An overview of the simulation scheme overlaying the

evolution tree that we found as well as the eve modules in the different insects are

displayed in Figure 4-1.

Note that in all these simulations, eve stripe 1 is not shown as it is primarily

the posterior genes that vary and are the focus of the study. The maximum of each

eve module is normalized to 1 for visualization purposes.

4.1 Drosophila to Anopheles

Our first set of simulations start from the Drosophila network defined in Figure

2-4. As described previously, the target designated by the fitness function for these

simulations is the Anopheles gap gene profile as an end point. With no restrictions

on size or position from the fitness function, the end profile appears to be uneven
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Figure 4–1: (A) Predictive evolutionary tree connecting Drosophila, Clogmia and
Anopheles through some last common ancestor. The labelled points along the
branches of this tree correspond to points in our simulation, discussed in the re-
spectively labelled Figures found in subsequent sections. (B) Caricatures of the eve
stripes in the different insects, color-coded according to their corresponding module
in Drosophila

however it can be imposed starting from the last step shown in panels (D), obtained

by regulating the strength of interactions at that time point.

An example of one of the simulations from Drosophila to Anopheles is found

in Figure 4-2.

In this particular simulation, the posterior hb domain moves anteriorly to split

the eve 7 stripe into an additional stripe as seen in 4.1C. This allows for stripe 5

to disappear while maintaining the condition that seven stripes are expressed in the
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Figure 4–2: Simulated evolutionary pathway (label F1 on 4)

profile. Once this stripe vanishes, the posterior gt domain can become obsolete in

the eve network and eventually dies out. We find ourselves with the module that

previously defined stripes 3 and 7 now controlling the stripes 3, 6 and 7 whereas the

eve module responsible for the control of the 4+6 stripes now controls the stripes 4

and 5.
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Similarly, Figure 4-3 presents a different pathway taken by our simulation through

phenotype space. However in this simulation, once a new eve stripe appears in the

posterior of the embryo it is first the posterior domain of gt that disappears allowing

for the stripe 5, repressed by gt, to extend towards the posterior and merge with

what is at that time stripe 6. The module for eve5 can then completely disappear

in further generations.

Figure 4–3: Simulated evolutionary pathway (label F2 on 4)
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Both the evolutionary scenarios presented describe a phenomena that is a highly

reproducible result from our simulations. To go from Drosophila to Anopheles it is

necessary to create one if not more new posterior eve stripes in the existing modules

to subsequently remove the eve 5 stripe module completely from the network while

maintaining the constraint of a minimum of 7 stripes. In both cases, the evolutionary

pressure of the posterior hb to shift forward consequently leads to the formation of

a third stripe in either the module 3+7 or 4+6 symmetrically about this hb domain.

This eventually gives rise to these modules expressing the strips 3,6 and 7 or 4, 5

and 7 respectively. The observation that the pair-rule pattern of eve in Anopheles

is composed of eight stripes can most likely be explained by having both modules

express a third stripe at the same time.

A prediction of our simulations is that intermediate Dipterans retain the mod-

ules, regulation scheme and logic of the eve modules present in Drosophila. For

example, eve4+ 5 and eve3+ 6 are homologous to the eve4+ 6 and eve3+ 7 respec-

tively in Drosophila which exhibits an additional module of eve5. As these stripes

(eve4 + 5 and eve3 + 6) are repressed by kni and hb, we expect to find them sym-

metrically about the kni domain which is not the case in Drosophila where the fifth

stripe, its own module not having any kni repression, is situated in the center of the

kni peak.

4.2 LCA to Drosophila

In the previous simulated evolution, the eve5 module always lost all gene ex-

pression by the time the target phenotype was reached. Thus one might ask the
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important question of how eve5 appears in the evolution from a least common an-

cestor to Drosophila. Is it possible that it is a complete new fabrication of the

network or simply an alteration of the existing network? A hint to a possible solu-

tion is suggested in Figure 4-3 where the eve5 module had a weak stripe emerge at

the exact position where the corresponding eve2 stripe is at that generation. This is

consistent with the observation that both the eve5 and eve2 modules have the same

Kr and gt repression scheme.

We started by defining a network with the appropriate last common ancestor

characteristics for the gap genes, such as a very posterior gt domain, and eve modules

corresponding to the ancestral gene homologous to their Drosophila counterparts,

excluding eve5. This network produces the gene expression profiles present in Figure

4-4A. The rest of the panels of Figure 4-4 illustrate different key generations in the

simulated evolution.

As the posterior gt domain shifts forward to a more anterior position than the

posterior hb domain, the ancestral eve 2 (aeve 2) module forms a second stripe sit-

uated along the axis in a position that would make it the fifth stripe in the total

ancestral eve pattern. This is the generation depicted in panel C. It is then possible

for a distinct stripe 5 to later evolve through some genetic drift. Simultaneously, the

appearance of this stripe and the back shift of posterior hb allows for the destruction

of the second aeve4+5 stripe. Later, the aeve4+5 stripe reappears posterior to the

new fifth stripe at the same time as the aeve3, 6+7 module loses a stripe due to the

hb domain moving more to the posterior in panel D. Thus the Drosophila pattern
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Figure 4–4: Simulated evolutionary pathway (label LC on 4)

of gap gene and segmentation gene is recovered.

4.3 Clogmia

We initiated a gap gene network without the posterior hb domain and check

that such a gap gene network (which resembles the gap gene expression profile of

Clogmia) generates the appropriate eve profile.
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Figure 4–5: The Clogmia eve gene expression profile (in purple) positioned from
anterior to posterior, right to left. Note there are 6 stripes prior to gastrulation.
Panels B-D show the expression of these eve stripes with respect to the gap gene
expression profiles (red). eve4&5 are positioned symmetrically about kni (D) and
no posterior gt is present (E), whereas eve stripe 3 is centered about kr (C). The
figure is reproduced as in A systematic analysis of the gap gene system in the
moth midge Clogmia albipunctata by Garcia-Solache[65].

As seen in Figure 4-5, Clogmia exhibits only 6 stripes prior to gastrulation and

our model is indeed consistent with this observation.

Much like in the final simulation steps targeting Anopheles, the Clogmia, 4-

6(A), profile doesn’t have any eve5 module from Drosophila and it is in fact not

necessary to obtain the correct eve profile. What differentiates this profile with
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Figure 4–6: The Clogmia simulated gene expression profile in (A) compared to the
LCA in (B). These are found in the evolution of our networks.

the previous LCA gene expression profiles is simply the lack of a posterior hb do-

main. Our model, as expressed in the figure, predicts that the ancestral eve modules

aeve3 + 6 and aeve4 + 5 corresponding to eve3+ and eve4 + 6 in Drosophila are

indeed laid out symmetrically about the kni domain that represses them.

4.4 Drosophila to Anopheles with ftz

As described previously, pair-rule genes define the location of anteroposterior

parasegments in dipterans. Thus far, steps in the evolutionary paths have resulted

in the destruction and creation of additional par-rule stripes. The problem with this

picture is that biologically we could not find viable mutant flies with two consecutive

segments missing. A relevant example to our simulations is the disappearance of

eve5: the stripe is responsible for the A4 posterior and A5 anterior boundary. There

must be some way for the embryo to retain information on the polarity of the proper
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parasegments, in this case maintain the polarity with A4 anterior and A5 posterior.

Our hypothesis is that another pair-rule gene that is out of phase with eve is present

and provides input for the segment polarity even when certain stripes disappear.

Thus, when a certain stripe disappears, the neighbouring stripes from the out of

phase pair-rule gene will combine and only one parasegment is lost. The segmentation

gene ftz was added to the model to play this role: the network for the ftz genes are

defined in Figure 2-4. Note that for the first set of simulations, we postulated that

a pure ftz stripe 4 be regulated by hb in it’s anterior and gt in it’s posterior, not as

defined in Figure 2-4 however this did not work. For now only these two pair-rule

genes are present in the model, additional ones will be considered below in a broader

discussion of polarity in the embryo.

However, simulating ftz as a primary pair-rule gene in this way (regulated by

hb in it’s anterior and gt in it’s posterior) led to problems: the evolutionary pathway

which were obtained in simulations are not achievable in the constraints set by our

new fitness, namely the alternating striped ftz and eve expression. First of all, both

the presumed ftz4 and eve5 modules depend on the posterior domain of gt which is

trying to disappear. Additionally the crucial constraint of having an alternation of

two pair-rule genes poses a problem in terms of the creation of additional eve stripes

in the posterior that previous simulations exhibit. The difficulty lies herein adding a

stripe that is bounded by two other stripes of the interchanging gene, a non-trivial

task in the evolution. Trials of simulations led us to conclude that simulations with

ftz as a primary pair-rule gene are unsuccessful in preserving an interspersed pattern

of eve/ftz.
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An important fact in this context, and one not used in previous simulations, is

that the ftz stripe 4 appears only with the 7 stripe zebra pattern in Drosophila.

We can get this secondary pair-rule behaviour by allowing repression of the ftz4

stripe by eve and not gt. The ftz4 stripe will be regulated by the eve profile in

the posterior and thus functions as a secondary pair-rule gene. An example of the

simulated evolution of such a network is found in Figure 4-7.

Figure 4–7: Simulated evolutionary pathway (label Ftz on 4)
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In these simulations, the posterior ftz stripes, namely 5, 6 and 7 that are nor-

mally independent modules regulated by the gap genes gradually disappear and are

replaced by the pair-rule ftz4 module. The ftz modules controlled by gap genes,

now completely anterior, vary little in the evolution as the anterior pattern of eve

doesn’t either. This keeps the intertwining pattern of the segmentation genes sus-

tained. However, as the posterior profile is now determined by the ftz4 module, any

eve stripe dying out will have the flanking ftz stripes merge together into one stripe

and thus maintain the alternating segmentation gene pattern that is required. This

is exactly what happens to eve5 bounded by the ftz4 in Figure 4-7 B and C and

hence the evolutionary pathway exhibits ftz and eve alternation at every generation

from Drosophila to Anopheles, a reproducible result over many simulations.

4.5 Pair-rule gene polarity

In our study of establishing polarity in the embryo it was noted that evolutionary

simulations fail as we add a primary pair-rule gene (ftz), succeeding only when

the said pair-rule gene was made secondary. This suggests that doing the same

would be true for additional pair-rule genes added to the network. It is nonetheless

an interesting question to ask how the phase of multiple pair-rule genes could be

conserved in such a network. This is also relevant to the question of polarity in the

embryo as a 2 pair-rule network is not sufficient to distinguish the front from the

back of our organism. Looking at a section defined by an eve and ftz alternation,

it is impossible to say what is the anterior or posterior. However having additional

striped genes will give some front-to-back ordering. In other words, adding the genes
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hairy (h) and runt (run) to obtain the sequence eve, run, ftz and h distinguishes

an anterior and posterior since the sequence is not identical when switched around

(as opposed to having only eve and ftz). Following the previous work done with

ftz, we propose that the pair-rule regulation scheme is much more dynamic in the

posterior of the LCA compared to that of Drosophila. Our quantitative model of

the dynamic regulation will combine h and run to the pre-existing network.

It is a shift of the eve stripes from posterior to anterior in Drosophila and

Clogmia prior to gastrulation that suggests potential dynamic nature of this pair-

rule regulation. If this is indeed the case, then there would be no correspondence,

except for eve, between Drosophila’s gap gene regulated pair-rule genes and the

dynamically regulated pair-rule genes in the LCA. The idea is that an appropriate

combination of repressions between the segmentation genes eve, run, ftz and h will

utilize the forward shift and establish the correct pattern as seen in Drosophila

without any additional gap gene input. The additional pair-rule regulation scheme

and the strength of repressions are characterized in Figure 4-8 A. These are in

addition to the already existing gene regulatory network defined in our previous

simulations. Coupled to temporal oscillations of the concentration of eve within a

cell, this model exhibits an alternating phase of higher to lower concentrations of the

different pair-rule genes within the cell, visualized in Figure 4-8 B. One cycle of this

oscillation of eve is synonymous to the passing of one eve stripe through the cell,

induced by some shift towards the anterior within the embryo.

It is through the control of the maternal gradients that the shift of gene con-

centrations to the anterior is introduced to our model. Further down the cascade
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Figure 4–8: (A) Network. (B) Concentration in time. (C) Top Drosophila, Bot
LCA.

of genes, the gap and, eventually, pair-rule genes also experience a forward shift as

they are dragged by the displacement of the maternal genes. Thus by adjusting the

location of maternal gradients dynamically it is possible to mimic the qualitative
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behaviour of the genes through the early stages of embryogenesis. This shift was

implemented in the Drosophila and Anopheles networks, as seen in the left panels

of Figure 4-8 C, with random initial concentrations of pair-rule genes excluding eve.

The interactions of the genes and sliding of the gap genes cause the noisy pair-rule

genes to stabilize to their known relative phases in Drosophila, as the right panels of

Figure 4-8 C show. Although this model for a dynamic ordering of the segmentation

gene pattern was applied to the entire anteroposterior axis, we can expect that the

anterior gap gene regulations persist while the posterior domain expresses this more

dynamic behaviour, much like in Figure 4-7.
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CHAPTER 5
Discussion

5.1 Pair-rule genes and polarity

The main result of this work is the prediction of the dynamics of the pair-rule

genes throughout the evolutionary process that differ between species and yet shows

homology. We have shown that certain eve modules (eve 3+7 and eve 4+6) of the

Drosophila network can form, through some mutations, into analogous modules in

Anopheles (respectively eve 3,6+7 and eve 4,5+8). Although it might seem unsur-

prising that this would be the case, the fact that a complex gene network is the

backbone of this pattern means that the exact phenotypic pathway through which

this change could have occurred is non-trivial. It is promising evidence in favour of

our model that the correct pattern for Clogmia can also be attained through this

evolutionary method, even with our minimal network.

In terms of the LCA, we have formulated that certain posterior pair-rule gene,

ftz, run and hairy in this case, would have to be secondary as they would derive

their phases from an anterior drift of the pre-existing gene network, notably eve.

This quantitative system drift, i.e. physical shift of the gene profile to the anterior,

would cause the The constructed feedback loop of these four segmentation genes is

reminiscent of a segmentation clock which would regulate the phase through the use

of a similarly constructed cyclic network. Indeed, a recent paper explains that in cer-

tain species, such as Tribolium castaneum, that although the anterior segmentation
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gene profile is provided positional information, the posterior pattern growth em-

ploys a segmentation clock to develop it’s cyclic pattern[66]. Additionally, Nasonia

vitripennis, which is known to employ a similar structure as Drosophila in the an-

terior, displays a phasing of the pair-rule genes much like a segmentation clock as of

the fifth segment[67]. This is precisely the location where our simulations become

dependent on this form of second-pair rule gene for the segmentation genes other

than eve. This all suggests that the mechanism we have modelled in Drosophila,

where eve is a first pair-rule gene regulated by the gap genes that fixes the phase

for subsequent pair-rule genes, is a strong potential candidate for the regulation in

Anopheles and is something that could be tested in Tribolium[68].

5.2 The computational evolution

This study further illustrates the power of computational methods in inferring

phenotypes and even ancestral genetic networks, offering predictions as to the dy-

namics that govern the development of such living organisms. In the context of

Dipteran embryogenesis it is impossible to experimentally study the dynamics of the

segmentation genes of the ancestral species. However, these computational methods

derived from machine learning and certain principles in physics allow the develop-

ment of predictive models from available data. Thus the study of these different

evolutionary pathways is in itself a method to explore the dynamics of these GRNs

as we can compare the pair-rule gene dynamics of the different models and see how

they differ from their observable quantities.

It must be mentioned that by no means do we state that the result given here

is unquestionably conclusive evidence that our model is the correct one. The genetic
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algorithm has provided us with a simple possible pathway that would explain the

differences in these species. There is of course the possibility that this is not the

proper formalism, but given that is a simple mechanism it is a promising approach.

Notably, further data from the different modules in Anopheles and Clogmia must

be extracted so that predictions of our study can be compared to the biology in

those systems. Furthermore, work on Tribolium has shown that there is in fact a

conservation of certain gene enhancers homologous to the ones in Drosophila[69],

suggesting that it might not be such an uncommon phenomenon within the family

order of Diptera. Regardless, the ability to predict qualitative features using quan-

titative models highlights the importance of using more quantitative frameworks in

approaching biological problems.

5.3 Conclusion

The gene regulatory network used to model the expression profiles of the dif-

ferent genes allowed us to find evolutionary pathways between two species of the

family of the order Diptera. Through these simulations, ancestral phenotypes were

obtained, potential networks that can explain. This is the power of computational

evolution: finding these predictive models which otherwise cannot be observed. From

these models, other ancestral dynamics can be tested. However, many assumptions

were made to model the genetic network of the species studied, notably the struc-

ture of the network itself. As stated previously, there are many unknown factors

contributing to the complete regulation scheme of the GRN of Drosophila during

embryogenesis and although a lot of data exists concerning the system, deriving

proper models is non-trivial. Extensive study of the system as a whole has revealed
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many shadow enhancers, independent components that seem to have a pretty sig-

nificant effect of the robustness of the anteroposterior patterning[70]. Experiments

perturbing the initial maternal input have also shown that in fact the cascade of

genes seems to exhibit a more responsive interpretation than previously thought,

adjusting dynamically to these perturbations[15]. This would contradict the current

threshold-dependent model, thus the underlying mechanism of this pattern formation

is as of yet still uncertain.

Consequently, there is still a lot of work to be done in understanding the orga-

nization and structure of the gene regulatory network key to the segmentation of the

Drosophila embryo along the anteroposterior axis. Starting with experimental data,

it is possible to lean on available techniques, as Dubois et al. do with their more in-

formation theory based approach[71]. The problem here lies in constructing models

that do not overcomplexify the solution, that is to say overfit the observable data.

No doubt probabilistic models and interpretations, such as Bayesian Statistical In-

ference, can help tackle these issues and cleverly configured evolutionary algorithms

have a lot to offer in terms of function optimization and model comparison: they

need only be applied in the right representation for the problems conceived. We sug-

gest that utilizing a version of the Bayesian Information Criterion[72] into the fitness

function of a GA would help construct a sufficient model for the gene regulatory

network of Drosophila, without overfitting said model. It is up to researchers from

more quantitative sciences to take an interest in these yet unanswered questions in

biology, from which some very fundamental concepts can be learnt, and to apply
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their knowledge as well as techniques to bring some meaning to this plethora of data

available.
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Appendix A: Drosophila Network

Regulated by
Gene expression bcd tll hkb cad hb gt Kr kni eve

cad 0.3/5 - - - - - - - -
hb 0.5/-9 0.4/-3 0.45/6 - - - - - -
gt 0.7/-10 0.23/7 - 0.6/-10 - - 0.9/3 - -
Kr 0.35/-10 - - - 0.8/4 0.1/1 - - -
kni 0.24/-10 0.2/5 - - 0.1/2 - 0.6/4 - -
eve2 0.45/-10 - - - - 0.2/10 0.3/10 - -

eve3 + 7 - 0.35/10 - - 0.55/10 - - 0.018/10 -
eve4 + 6 - 0.25/7 - - 0.1/7 - - 0.5/10 -
eve5 0.08/-2 0.25/5 - - - 0.07/10 0.3/10 - -

ftz1 + 5 0.1/-10 - - - - 0.46/10 0.1/10 - -
ftz2 + 7 0.1/-10 0.43/10 - - - 0.08/7 0.7/7 0.03/7 -
ftz3 + 6 0.1/-10 0.29/7 - - 0.25/7 - 0.13/5 - -
ftz4 - 0.1/10 0.01/-10 - 0.04/10 - - - 0.2/10

Table 5–1: Drosophila Network Parameters

Gap gene network parameters for Drosophila. Each interaction is tabulated as
the (concentration threshold)/(hill coefficient). Positive hill coefficients denote a
repression, whereas negative hill coefficients denote an activation. We’ve added cad
too as it expresses a slight bcd repression.
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Appendix B: Anopheles network

Regulated by
Gene expression bcd tll hkb cad hb gt Kr kni

cad 0.3/5 - - - - - - -
hb 0.51/-9 - 0.2/6 - - - - -
gt 0.7/-10 0.8/7 - 0.95/-15 - - 0.9/3 -
Kr 0.39/-10 - - - 0.8/4 0.1/1 - -
kni 0.25/-10 - - - 0.1/2 - 0.7/4 -
aeve2 0.4/-10 - - - - 0.2/10 0.32/10 -

aeve3, 6&7 - 0.34/10 - - 0.6/10 - - 0.04/10
aeve4&5 - 0.15/7 - - 0.1/7 - - 0.74/10

Table 5–2: Anopheles Network Parameters

Gene network parameters for Anopheles. The aeve modules correspond to the
’ancestral’ eve pattern. Each interaction is tabulated as the (concentration
threshold)/(hill coefficient). Positive hill coefficients denote a repression, whereas
negative hill coefficients denote an activation. We’ve added cad too as it expresses a
slight bcd repression.
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Appendix C: The Fitness Function (Cont’d)

In terms of the fitness function for the evolution from Drosophila to Anopheles ,

certain conditions had to be demanded of the network as stated previously. First, the

amount of eve stripes had to be maintained to at least 7 stripes, as it is consistent for

both the initial and final profiles. Second, to be biologically relevant the model needs

to express an alternation of the pattern of the segmentation genes even-skipped and

fushi tarazu. Thus if either of those conditions are not met, the network is irrelevant

and attributed a high score. To further direct the network through a relevant genetic

pathway, a certain score is attributed to the quantity of giant in the posterior region

of the embryo. Expressing the concentrations of giant in the cells in the posterior as

values in a vector, the score is assigned as the dot product of this vector. Since there

is no Giant in the posterior of the mosquito, seeing this dot product minimized will

give the required result. Similarly, a condition on Hunchback was imposed whereas

the difference between the current profile and profile in the posterior of anopheles

was attributed a score. Finally, as the profile of even-skipped differs very little in

the anterior of either species the difference of the current eve profile and the initial

eve profile is another condition in the fitness. Note that as to not be too restricted

in the evolution only the maximum of the difference of eve (diffEve) and difference
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of hunchback (diffHb) is added to the score:

Score = C1

∑
i∈posterior

(Gti)
2+max(C2diffHb, C3diffEve)+

⎧⎪⎪⎨
⎪⎪⎩
0 if alternation and ≥ 7stripes

1000 otherwise

(5.1)

This is what the fitness function tries to minimize in order to obtain the most promis-

ing network. The different constants C1, C2 and C3 are there to scale the strength

of each individual component of the score, depending on how strong the condition

needs to be. Different values of the constants were used across many simulations,

however for the final simulation the values used were of C1 = C2 = 1 and C3 = 0.1

Note that when simulations were conducted without fushi tarazu, the condition of

alternating the stripes was removed and the rest of the fitness was maintained.

As for the opposite evolution from the LCA to fly described earlier, the profiles have

notably the positions of hunchback and giant inverted in the posterior. The function

that we wish to minimize aught to reflect this, thus to keep things simple, the score

was determined as the subtraction of the current concentration of gap genes (knirps,

Kruppel, giant and hunchback) in each cell from the ones in the embryo of the fly.

Practically what this means is that for each gap gene the concentrations were arrayed

by cell number in the embryo and then subtracted from an array of the concentra-

tions of that same gene in the fly, obtaining an array of the differences, diffgap.

the sum of the dot product of the arrays is our score, since as the profiles of the

gap genes converge, the score converges to zero. Similar to the previous case, a high

score was attributed if less than 7 stripes of Eve were observed in the embryos profile.

60



Score =
∑

gap genes

(diffgap genes)
2 +

⎧⎪⎪⎨
⎪⎪⎩
0 if ≥ 7stripes

1000 otherwise

(5.2)

The following 2 figures show examples of different networks on different evolutionary

simulations. One can see that the convergence towards a certain plateau of constant

fitness if rather sporadic and hard to predict, given the nature of the genetic algo-

rithm.

Figure 5–1: Example of the evolution from the fly to mosquito where (A) illustrates
the minimization of the score that is attributed each network along the given evolu-
tionary pathway as well as denoting where (B) and (C) lie on this path. The network
illustrated in (B) is earlier and hence has a larger score, as attributed by Equation 6,
because of a larger posterior concentration of Giant than in the network (C) where
it is nearly non-existent. Note that both profiles have alternating patterns and at
least 7 eve stripes (counting the eve1 stripe which is not depicted).
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Figure 5–2: Example of the evolution from the presumptive last common ancestor to
fly. As in Figure 3, the score of the evolution through the landscape of phenotypes
is portrayed in (A) as well as the location in this evolution where the networks of
(B) and (C) can be found. Following the score defined in Equation 7, the gap gene
profiles in (B) are not as close to the profile we expect in the fly than are the profiles
of (C).
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